Processing math: 9%

7. Tensor calculus

7.1 Vectors and covectors

A finite dimensional vector space is denoted by V,W. The vector space of linear transformations from V to W is denoted by L(V,W). Consider L(V,IR):=V. We name V the dual space of V. Now we can define vectors in V with basis c and covectors in V with basis ˆc. Properties of both are:

  1. Vectors: x=xici with basis vectors ci: ci=xi Transformation from system i to i is given by: ci=Aiici=iV  ,  xi=Aiixi
  2. Covectors: ˆx=xiˆc i with basis vectors ˆc i ˆc i=dxi Transformation from system i to i is given by: ˆc i=Aiiˆc iV  ,  xi=Aiixi

Here the Einstein convention is used: aibi:=iaibi The coordinate transformation is given by: Aii=xixi  ,  Aii=xixi From this follows that AikAkl=δkl and Aii=(Aii)1.

In differential notation the coordinate transformations are given by: dxi=xixidxi   and   xi=xixixi The general transformation rule for a tensor T is: Tq1...qns1...sm=|xu|uq1xp1uqnxpnxr1us1xrmusmTp1...pnr1...rm For an absolute tensor =0.

7.2 Tensor algebra

The following holds: aij(xi+yi)aijxi+aijyi,   but:  aij(xi+yj) and (a_{ij}+a_{ji})x_ix_j\equiv2a_{ij}x_ix_j,~~~\mbox{but:}~~(a_{ij}+a_{ji})x_iy_j\not\equiv 2a_{ij}x_iy_j en (a_{ij}-a_{ji})x_ix_j\equiv0.

The sum and difference of two tensors is a tensor of the same rank: A_q^p\pm B_q^p. The outer tensor product results in a tensor with a rank equal to the sum of the ranks of both tensors: A_q^{pr}\cdot B_s^m=C_{qs}^{prm}. The contraction equals two indices and sums over them. Suppose we take r=s for a tensor A_{qs}^{mpr}, this results in: \sum\limits_r A_{qr}^{mpr}=B_q^{mp}. The inner product of two tensors is defined by taking the outer product followed by a contraction.

7.3 Inner product

Definition: the bilinear transformation B:{\cal V}\times{\cal V}^*\rightarrow I\hspace{-1mm}R, B(\vec{x},\hat{\vec{y}}\,)=\hat{\vec{y}}(\vec{x}) is denoted by <\vec{x},\hat{\vec{y}}\,>. For this pairing operator <\cdot,\cdot>=\delta holds: \hat{\vec{y}}(\vec{x})=<\vec{x},\hat{\vec{y}}>=y_ix^i~~~,~~~<\hat{\vec{c}^{~i}},\vec{c}_j>=\delta_j^i Let G:{\cal V}\rightarrow{\cal V}^* be a linear bijection. Define the bilinear forms \begin{eqnarray*} g:{\cal V\times V}\rightarrow I\hspace{-1mm}R&~~~&g(\vec{x},\vec{y})=<\vec{x},G\vec{y}>\\ h:{\cal V^*\times V^*}\rightarrow I\hspace{-1mm}R&~~~&h(\hat{\vec{x}},\hat{\vec{y}}\,)= \end{eqnarray*} Both are not degenerated. The following holds: h(G\vec{x},G\vec{y})=<\vec{x},G\vec{y}>=g(\vec{x},\vec{y}). If we identify \cal V and \cal V^* with G, than g (or h) gives an inner product on \cal V.

The inner product (,)_\Lambda on \Lambda^k(\cal V) is defined by: (\Phi,\Psi)_\Lambda=\frac{1}{k!}(\Phi,\Psi)_{T^0_k(\cal V)} The inner product of two vectors is than given by: (\vec{x},\vec{y})=x^iy^i<\vec{c}_i,G\vec{c}_j>=g_{ij}x^ix^j The matrix g_{ij} of G is given by g_{ij}\hat{\vec{c}}^{~j}=G\vec{c}_i The matrix g^{ij} of G^{-1} is given by: g^{kl}\vec{c}_l=G^{-1}\hat{\vec{c}}^{~k} For this metric tensor g_{ij} holds: g_{ij}g^{jk}=\delta_i^k. This tensor can raise or lower indices: x_j=g_{ij}x^i~~~,~~~x^i=g^{ij}x_j and du^i=\hat{\vec{c}}^{~i}=g^{ij}\vec{c}_j.

7.4 Tensor product

Definition: let \cal U and \cal V be two finite dimensional vector spaces with dimensions m and n. Let \cal U^*\times V^* be the cartesian product of \cal U and \cal V. A function t:{\cal U^*\times V^*}\rightarrow I\hspace{-1mm}R; (\hat{\vec{u}};\hat{\vec{v}}\,)\mapsto t(\hat{\vec{u}};\hat{\vec{v}}\,)=t^{\alpha\beta}u_\alpha u_\beta\in I\hspace{-1mm}R is called a tensor if t is linear in \hat{\vec{u}} and \hat{\vec{v}}. The tensors t form a vector space denoted by \cal U\otimes V. The elements T\in\cal V\otimes V are called contravariant 2-tensors: T=T^{ij}\vec{c}_i\otimes\vec{c}_j=T^{ij}\partial_i\otimes\partial_j. The elements T\in\cal V^*\otimes V^* are called covariant 2-tensors: T=T_{ij}\hat{\vec{c}}^{~i}\otimes\hat{\vec{c}}^{~j}=T_{ij}dx^i\otimes dx^j. The elements T\in\cal V^*\otimes V are called mixed 2 tensors: T=T_i^{.j}\hat{\vec{c}}^{~i}\otimes\vec{c}_j=T_i^{.j}dx^i\otimes\partial_j, and analogous for T\in\cal V\otimes V^*.

The numbers given by t^{\alpha\beta}=t(\hat{\vec{c}}^{~\alpha},\hat{\vec{c}}^{~\beta}\,) with 1\leq\alpha\leq m and 1\leq\beta\leq n are the components of t.

Take \vec{x}\in\cal U and \vec{y}\in\cal V. Than the function \vec{x}\otimes\vec{y}, definied by (\vec{x}\otimes\vec{y})(\hat{\vec{u}},\hat{\vec{v}})=<\vec{x},\hat{\vec{u}}>_U<\vec{y},\hat{\vec{v}}>_V is a tensor. The components are derived from: (\vec{u}\otimes\vec{v})_{ij}=u_iv^j. The tensor product of 2 tensors is given by: \begin{eqnarray*} {2\choose0}~\mbox{form:}~&&(\vec{v}\otimes\vec{w})(\hat{\vec{p}},\hat{\vec{q}})=v^ip_iw^kq_k=T^{ik}p_iq_k\\ {0\choose2}~\mbox{form:}~&&(\hat{\vec{p}}\otimes\hat{\vec{q}})(\vec{v},\vec{w})=p_iv^iq_kw^k=T_{ik}v^iw^k\\ {1\choose1}~\mbox{form:}~&&(\vec{v}\otimes\hat{\vec{p}})(\hat{\vec{q}},\vec{w})=v^iq_ip_kw^k=T_k^iq_iw^k \end{eqnarray*}

7.5 Symmetric and antisymmetric tensors

A tensor t\in{\cal V\otimes V} is called symmetric resp. antisymmetric if \forall\hat{\vec{x}},\hat{\vec{y}}\in{\cal V^*} holds: t(\hat{\vec{x}},\hat{\vec{y}}\,)=t(\hat{\vec{y}},\hat{\vec{x}}\,) resp. t(\hat{\vec{x}},\hat{\vec{y}}\,)=-t(\hat{\vec{y}},\hat{\vec{x}}\,).

A tensor t\in{\cal V^*\otimes V^*} is called symmetric resp. antisymmetric if \forall\vec{x},\vec{y}\in{\cal V} holds: t(\vec{x},\vec{y})=t(\vec{y},\vec{x}) resp. t(\vec{x},\vec{y})=-t(\vec{y},\vec{x}). The linear transformations \cal S and \cal A in \cal V\otimes W are defined by: \begin{eqnarray*} {\cal S}t(\hat{\vec{x}},\hat{\vec{y}}\,)&=&\frac{1}{2}(t(\hat{\vec{x}},\hat{\vec{y}})+t(\hat{\vec{y}},\hat{\vec{x}}\,))\\ {\cal A}t(\hat{\vec{x}},\hat{\vec{y}}\,)&=&\frac{1}{2}(t(\hat{\vec{x}},\hat{\vec{y}})-t(\hat{\vec{y}},\hat{\vec{x}}\,)) \end{eqnarray*} Analogous in \cal V^*\otimes V^*. If t is symmetric resp. antisymmetric, than {\cal S}t=t resp. {\cal A}t=t.

The tensors \vec{e}_i\vee\vec{e}_j=\vec{e}_i\vec{e}_j=2{\cal S}(\vec{e}_i\otimes\vec{e}_j), with 1\leq i\leq j\leq n are a basis in \cal S(V\otimes V) with dimension \frac{1}{2} n(n+1).

The tensors \vec{e}_i\wedge\vec{e}_j=2{\cal A}(\vec{e}_i\otimes\vec{e}_j), with 1\leq i\leq j\leq n are a basis in \cal A(V\otimes V) with dimension \frac{1}{2} n(n-1).

The complete antisymmetric tensor \varepsilon is given by: \varepsilon_{ijk}\varepsilon_{klm}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}.

The permutation-operators e_{pqr} are defined by: e_{123}=e_{231}=e_{312}=1, e_{213}=e_{132}=e_{321}=-1, for all other combinations e_{pqr}=0. There is a connection with the \varepsilon tensor: \varepsilon_{pqr}=g^{-1/2}e_{pqr} and \varepsilon^{pqr}=g^{1/2}e^{pqr}.

7.6 Outer product

Let \alpha\in\Lambda^k(\cal V) and \beta\in\Lambda^l(\cal V). Than \alpha\wedge\beta\in\Lambda^{k+l}(\cal V) is defined by: \alpha\wedge\beta=\frac{(k+l)!}{k!l!}{\cal A}(\alpha\otimes\beta) If \alpha and \beta\in\Lambda^1(\cal V)={\cal V}^* holds: \alpha\wedge\beta=\alpha\otimes\beta-\beta\otimes\alpha

The outer product can be written as: (\vec{a}\times\vec{b})_i=\varepsilon_{ijk}a^jb^k, \vec{a}\times\vec{b}=G^{-1}\cdot*(G\vec{a}\wedge G\vec{b}).

Take \vec{a},\vec{b},\vec{c},\vec{d}\in I\hspace{-1mm}R^4. Than (dt\wedge dz)(\vec{a},\vec{b})=a_0b_4-b_0a_4 is the oriented surface of the projection on the tz-plane of the parallelogram spanned by \vec{a} and \vec{b}.

Further (dt\wedge dy\wedge dz)(\vec{a},\vec{b},\vec{c})=\det\left|\begin{array}{ccc} a_0&b_0&c_0\\ a_2&b_2&c_2\\ a_4&b_4&c_4 \end{array}\right| is the oriented 3-dimensional volume of the projection on the tyz-plane of the parallelepiped spanned by \vec{a}, \vec{b} and \vec{c}.

(dt\wedge dx\wedge dy\wedge dz)(\vec{a},\vec{b},\vec{c},\vec{d})=\det(\vec{a},\vec{b},\vec{c},\vec{d}) is the 4-dimensional volume of the hyperparellelepiped spanned by \vec{a}, \vec{b}, \vec{c} and \vec{d}.

7.7 The Hodge star operator

\Lambda^k(\cal V) and \Lambda^{n-k}(\cal V) have the same dimension because {n\choose k}={n\choose{n-k}} for 1\leq k\leq n. Dim(\Lambda^n({\cal V}))=1. The choice of a basis means the choice of an oriented measure of volume, a volume \mu, in \cal V. We can gauge \mu so that for an orthonormal basis \vec{e}_i holds: \mu(\vec{e}_i)=1. This basis is than by definition positive oriented if \mu=\hat{\vec{e}}^{~1}\wedge \hat{\vec{e}}^{~2}\wedge...\wedge \hat{\vec{e}}^{~n}=1.

Because both spaces have the same dimension one can ask if there exists a bijection between them. If \cal V has no extra structure this is not the case. However, such an operation does exist if there is an inner product defined on \cal V and the corresponding volume \mu. This is called the Hodge star operator and denoted by *. The following holds: \forall_{w\in\Lambda^k({\cal V})}\exists_{*w\in\Lambda^{k-n}({\cal V})}\forall_{\theta\in\Lambda^k({\cal V})}~~ \theta\wedge*w=(\theta,w)_\lambda\mu For an orthonormal basis in I\hspace{-1mm}R^3 holds: the volume: \mu=dx\wedge dy\wedge dz, *dx\wedge dy\wedge dz=1, *dx=dy\wedge dz, *dz=dx\wedge dy, *dy=-dx\wedge dz, *(dx\wedge dy)=dz, *(dy\wedge dz)=dx, *(dx\wedge dz)=-dy.

For a Minkowski basis in I\hspace{-1mm}R^4 holds: \mu=dt\wedge dx\wedge dy\wedge dz, G=dt\otimes dt-dx\otimes dx-dy\otimes dy-dz\otimes dz, and *dt\wedge dx\wedge dy\wedge dz=1 and *1=dt\wedge dx\wedge dy\wedge dz. Further *dt=dx\wedge dy\wedge dz and *dx=dt\wedge dy\wedge dz.

7.8 Differential operations

7.8.1 The directional derivative

The directional derivative in point \vec{a} is given by: {\cal L}_{\vec{a}}f=<\vec{a},df>=a^i\frac{\partial f}{\partial x^i}

7.8.2 The Lie-derivative

The Lie-derivative is given by: ({\cal L}_{\vec{v}}\vec{w})^j=w^i\partial_iv^j-v^i\partial_iw^j

7.8.3 Christoffel symbols

To each curvelinear coordinate system u^i we add a system of n^3 functions \Gamma^i_{jk} of \vec{u}, defined by \frac{\partial^2\vec{x}}{\partial u^i\partial u^k}=\Gamma_{jk}^i\frac{\partial\vec{x}}{\partial u^i} These are Christoffel symbols of the second kind. Christoffel symbols are no tensors. The Christoffel symbols of the second kind are given by: \left\{\begin{array}{@{}c@{}}i\\ jk \end{array}\right\}:=\Gamma^i_{jk}= \left\langle\frac{\partial^2\vec{x}}{\partial u^k\partial u^j},dx^i\right\rangle with \Gamma^i_{jk}=\Gamma^i_{kj}. Their transformation to a different coordinate system is given by: \Gamma_{j'k'}^{i'}=A_{i'}^iA_{j'}^jA_{k'}^k\Gamma^i_{jk}+A_i^{i'}(\partial_{j'}A_{k'}^i) The first term in this expression is 0 if the primed coordinates are cartesian.

There is a relation between Christoffel symbols and the metric: \Gamma_{jk}^i=\frac{1}{2} g^{ir}(\partial_j g_{kr}+\partial_k g_{rj}-\partial_r g_{jk}) and \Gamma^\alpha_{\beta\alpha}=\partial_\beta(\ln(\sqrt{|g|})).

Lowering an index gives the Christoffel symbols of the first kind: \Gamma^i_{jk}=g^{il}\Gamma_{jkl}.

7.8.4 The covariant derivative

The covariant derivative \nabla_j of a vector, covector and of rank-2 tensors is given by: \begin{eqnarray*} \nabla_ja^i &=&\partial_ja^i+\Gamma^i_{jk}a^k\\ \nabla_ja_i &=&\partial_ja_i-\Gamma^k_{ij}a_k\\ \nabla_\gamma a^\alpha_\beta &=&\partial_\gamma a^\alpha_\beta -\Gamma^\varepsilon_{\gamma\beta} a^\alpha_\varepsilon+\Gamma^\alpha_{\gamma\varepsilon}a_\beta^\varepsilon\\ \nabla_\gamma a_{\alpha\beta}&=&\partial_\gamma a_{\alpha\beta}-\Gamma^\varepsilon_{\gamma\alpha}a_{\varepsilon\beta}-\Gamma^\varepsilon_{\gamma\beta}a_{\alpha\varepsilon}\\ \nabla_\gamma a^{\alpha\beta}&=&\partial_\gamma a^{\alpha\beta}+\Gamma^\alpha_{\gamma\varepsilon}a^{\varepsilon\beta}+\Gamma^\beta_{\gamma\varepsilon}a^{\alpha\varepsilon} \end{eqnarray*} Ricci's theorem: \nabla_\gamma g_{\alpha\beta}=\nabla_\gamma g^{\alpha\beta}=0

7.9 Differential operators

7.9.1 The Gradient

is given by: {\rm grad}(f)=G^{-1}df=g^{ki}\frac{\partial f}{\partial x^i}\frac{\partial}{\partial x^k}

7.9.2 The divergence

is given by: {\rm div}(a^i)=\nabla_ia^i=\frac{1}{\sqrt{g}}\partial_k(\sqrt{g}\,a^k)

7.9.3 The curl

is given by: {\rm rot}(a)=G^{-1}\cdot*\cdot d\cdot G\vec{a}=-\varepsilon^{pqr}\nabla_qa_p=\nabla_qa_p-\nabla_pa_q

7.9.4 The Laplacian

is given by: \Delta(f)={\rm div~grad}(f)=*d*df=\nabla_ig^{ij}\partial_jf=g^{ij}\nabla_i\nabla_jf= \frac{1}{\sqrt{g}}\frac{\partial}{\partial x^i}\left(\sqrt{g}\,g^{ij}\frac{\partial f}{\partial x^j}\right)

7.10 Differential geometry

7.10.1 Space curves

We limit ourselves to I\hspace{-1mm}R^3 with a fixed orthonormal basis. A point is represented by the vector \vec{x}=(x^1,x^2,x^3). A space curve is a collection of points represented by \vec{x}=\vec{x}(t). The arc length of a space curve is given by: s(t)=\int\limits_{t_0}^t\sqrt{\left(\frac{dx}{d\tau}\right)^2+\left(\frac{dy}{d\tau}\right)^2+\left(\frac{dz}{d\tau}\right)^2}d\tau The derivative of s with respect to t is the length of the vector d\vec{x}/dt: \left(\frac{ds}{dt}\right)^2=\left(\frac{d\vec{x}}{dt},\frac{d\vec{x}}{dt}\right) The osculation plane in a point P of a space curve is the limiting position of the plane through the tangent of the plane in point P and a point Q when Q approaches P along the space curve. The osculation plane is parallel with \dot{\vec{x}}(s). If \ddot{\vec{x}}\neq0 the osculation plane is given by: \vec{y}=\vec{x}+\lambda\dot{\vec{x}}+\mu\ddot{\vec{x}}~~~\mbox{so}~~~ \det(\vec{y}-\vec{x},\dot{\vec{x}},\ddot{\vec{x}}\,)=0 In a bending point holds, if \dddot{\vec{x}}\neq0: \vec{y}=\vec{x}+\lambda\dot{\vec{x}}+\mu\dddot{\vec{x}} The tangent has unit vector \vec{\ell}=\dot{\vec{x}}, the main normal unit vector \vec{n}=\ddot{\vec{x}} and the binormal \vec{b}=\dot{\vec{x}}\times\ddot{\vec{x}}. So the main normal lies in the osculation plane, the binormal is perpendicular to it.

Let P be a point and Q be a nearby point of a space curve \vec{x}(s). Let \Delta\varphi be the angle between the tangents in P and Q and let \Delta\psi be the angle between the osculation planes (binormals) in P and Q. Then the curvature \rho and the torsion \tau in P are defined by: \rho^2=\left(\frac{d\varphi}{ds}\right)^2=\lim_{\Delta s\rightarrow0}\left(\frac{\Delta\varphi}{\Delta s}\right)^2~~~,~~~ \tau^2=\left(\frac{d\psi}{ds}\right)^2 and \rho>0. For plane curves \rho is the ordinary curvature and \tau=0. The following holds: \rho^2=(\vec{\ell},\vec{\ell})=(\ddot{\vec{x}},\ddot{\vec{x}}\,)~~~\mbox{and}~~~ \tau^2=(\dot{\vec{b}},\dot{\vec{b}}) Frenet's equations express the derivatives as linear combinations of these vectors: \dot{\vec{\ell}}=\rho\vec{n}~~,~~\dot{\vec{n}}=-\rho\vec{\ell}+\tau\vec{b}~~,~~ \dot{\vec{b}}=-\tau\vec{n} From this follows that \det(\dot{\vec{x}},\ddot{\vec{x}},\dddot{\vec{x}}\,)=\rho^2\tau.

Some curves and their properties are:

Screw line \tau/\rho=constant
Circle screw line \tau=constant, \rho=constant
Plane curves \tau=0
Circles \rho=constant, \tau=0
Lines \rho=\tau=0

7.10.2 Surfaces in I\hspace{-1mm}R^3

A surface in I\hspace{-1mm}R^3 is the collection of end points of the vectors \vec{x}=\vec{x}(u,v), so x^h=x^h(u^\alpha). On the surface are 2 families of curves, one with u=constant and one with v=constant.

The tangent plane in a point P at the surface has basis: \vec{c}_1=\partial_1\vec{x}~~~\mbox{and}~~~\vec{c}_2=\partial_2\vec{x}

7.10.3 The first fundamental tensor

Let P be a point of the surface \vec{x}=\vec{x}(u^\alpha). The following two curves through P, denoted by u^\alpha=u^\alpha(t), u^\alpha=v^\alpha(\tau), have as tangent vectors in P \frac{d\vec{x}}{dt}=\frac{du^\alpha}{dt}\partial_\alpha\vec{x}~~~,~~~ \frac{d\vec{x}}{d\tau}=\frac{dv^\beta}{d\tau}\partial_\beta\vec{x} The first fundamental tensor of the surface in P is the inner product of these tangent vectors: \left(\frac{d\vec{x}}{dt},\frac{d\vec{x}}{d\tau}\right)= (\vec{c}_\alpha,\vec{c}_\beta)\frac{du^\alpha}{dt}\frac{dv^\beta}{d\tau} The covariant components w.r.t.\ the basis \vec{c}_\alpha=\partial_\alpha\vec{x} are: g_{\alpha\beta}=(\vec{c}_\alpha,\vec{c}_\beta) For the angle \phi between the parameter curves in P: u=t,v=constant and u=constant, v=\tau holds: \cos(\phi)=\frac{g_{12}}{\sqrt{g_{11}g_{22}}} For the arc length s of P along the curve u^\alpha(t) holds: ds^2=g_{\alpha\beta}du^\alpha du^\beta This expression is called the line element.

7.10.4 The second fundamental tensor

The 4 derivatives of the tangent vectors \partial_\alpha\partial_\beta\vec{x}=\partial_\alpha\vec{c}_\beta are each linear independent of the vectors \vec{c}_1, \vec{c}_2 and \vec{N}, with \vec{N} perpendicular to \vec{c}_1 and \vec{c}_2. This is written as: \partial_\alpha\vec{c}_\beta=\Gamma^\gamma_{\alpha\beta}\vec{c}_\gamma+h_{\alpha\beta}\vec{N} This leads to: \Gamma^\gamma_{\alpha\beta}=(\vec{c}^{~\gamma},\partial_\alpha\vec{c}_\beta)~~~,~~~ h_{\alpha\beta}=(\vec{N},\partial_\alpha\vec{c}_\beta)=\frac{1}{\sqrt{\det|g|}}\det(\vec{c}_1,\vec{c}_2,\partial_\alpha\vec{c}_\beta)

7.10.5 Geodetic curvature

A curve on the surface \vec{x}(u^\alpha) is given by: u^\alpha=u^\alpha(s), than \vec{x}=\vec{x}(u^\alpha(s)) with s the arc length of the curve. The length of \ddot{\vec{x}} is the curvature \rho of the curve in P. The projection of \ddot{\vec{x}} on the surface is a vector with components p^\gamma=\ddot{u}^\gamma+\Gamma^\gamma_{\alpha\beta}\dot{u}^\alpha\dot{u}^\beta of which the length is called the geodetic curvature of the curve in p. This remains the same if the surface is curved and the line element remains the same. The projection of \ddot{\vec{x}} on \vec{N} has length p=h_{\alpha\beta}\dot{u}^\alpha\dot{u}^\beta and is called the normal curvature of the curve in P. The theorem of Meusnier states that different curves on the surface with the same tangent vector in P have the same normal curvature.

A geodetic line of a surface is a curve on the surface for which in each point the main normal of the curve is the same as the normal on the surface. So for a geodetic line is in each point p^\gamma=0, so \frac{d^2u^\gamma}{ds^2}+\Gamma^\gamma_{\alpha\beta}\frac{du^\alpha}{ds}\frac{du^\beta}{ds}=0 The covariant derivative \nabla/dt in P of a vector field of a surface along a curve is the projection on the tangent plane in P of the normal derivative in P.

For two vector fields \vec{v}(t) and \vec{w}(t) along the same curve of the surface follows Leibniz' rule: \frac{d(\vec{v},\vec{w})}{dt}=\left(\vec{v},\frac{\nabla\vec{w}}{dt}\right)+\left(\vec{w},\frac{\nabla\vec{v}}{dt}\right) Along a curve holds: \frac{\nabla}{dt}(v^\alpha\vec{c}_\alpha)=\left(\frac{dv^\gamma}{dt}+\Gamma^\gamma_{\alpha\beta}\frac{du^\alpha}{dt}v^\beta\right)\vec{c}_\gamma

7.11 Riemannian geometry

The Riemann tensor R is defined by: R^\mu_{\nu\alpha\beta}T^\nu=\nabla_\alpha\nabla_\beta T^\mu-\nabla_\beta\nabla_\alpha T^\mu This is a 1\choose 3 tensor with n^2(n^2-1)/12 independent components not identically equal to 0. This tensor is a measure for the curvature of the considered space. If it is 0, the space is a flat manifold. It has the following symmetry properties: R_{\alpha\beta\mu\nu}=R_{\mu\nu\alpha\beta}=-R_{\beta\alpha\mu\nu}=-R_{\alpha\beta\nu\mu} The following relation holds: [\nabla_\alpha,\nabla_\beta]T_\nu^\mu=R_{\sigma\alpha\beta}^\mu T_\nu^\sigma+R_{\nu\alpha\beta}^\sigma T_\sigma^\mu The Riemann tensor depends on the Christoffel symbols through R^\alpha_{\beta\mu\nu}=\partial_\mu\Gamma^\alpha_{\beta\nu}-\partial_\nu\Gamma^\alpha_{\beta\mu}+\Gamma^\alpha_{\sigma\mu}\Gamma^\sigma_{\beta\nu}-\Gamma^\alpha_{\sigma\nu}\Gamma^\sigma_{\beta\mu} In a space and coordinate system where the Christoffel symbols are 0 this becomes: R^\alpha_{\beta\mu\nu}=\frac{1}{2} g^{\alpha\sigma}(\partial_\beta\partial_\mu g_{\sigma\nu}-\partial_\beta\partial_\nu g_{\sigma\mu}+\partial_\sigma\partial_\nu g_{\beta\mu}-\partial_\sigma\partial_\mu g_{\beta\nu}) The Bianchi identities are: \nabla_\lambda R_{\alpha\beta\mu\nu}+\nabla_\nu R_{\alpha\beta\lambda\mu} +\nabla_\mu R_{\alpha\beta\nu\lambda}=0.

The Ricci tensor is obtained by contracting the Riemann tensor: R_{\alpha\beta}\equiv R_{\alpha\mu\beta}^\mu, and is symmetric in its indices: R_{\alpha\beta}=R_{\beta\alpha}. The Einstein tensor G is defined by: G^{\alpha\beta}\equiv R^{\alpha\beta}-\frac{1}{2} g^{\alpha\beta}. It has the property that \nabla_\beta G^{\alpha\beta}=0. The Ricci-scalar is R=g^{\alpha\beta}R_{\alpha\beta}.