If
the group is called Abelian or commutative. Vector spaces form an Abelian group for addition and multiplication: 1⋅→a=→a, λ(μ→a)=(λμ)→a, (λ+μ)(→a+→b)=λ→a+λ→b+μ→a+μ→b.
W is a linear subspace if ∀→w1,→w2∈W holds: λ→w1+μ→w2∈W.
W is an invariant subspace of V for the operator A if ∀→w∈W holds: A→w∈W.
The set vectors {→an} is linear independent if: ∑iλi→ai=0 ⇔ ∀iλi=0 The set {→an} is a basis if it is 1. independent and 2. V=<→a1,→a2,...>=∑λi→ai.
The transpose of A is defined by: aTij=aji. For this holds (AB)T=BTAT and (AT)−1=(A−1)T. For the inverse matrix holds: (A⋅B)−1=B−1⋅A−1. The inverse matrix A−1 has the property that A⋅A−1=II and can be found by diagonalization: (Aij|II)∼(II|A−1ij).
The inverse of a 2×2 matrix is: (abcd)−1=1ad−bc(d−b−ca)
The determinant function D=det is defined by: \det(A)=D(\vec{a}_{*1},\vec{a}_{*2},...,\vec{a}_{*n}) For the determinant \det(A) of a matrix A holds: \det(AB)=\det(A)\cdot\det(B). Een 2\times2 matrix has determinant: \det\left(\begin{array}{cc}a&b\\ c&d \end{array}\right)=ad-cb The derivative of a matrix is a matrix with the derivatives of the coefficients: \frac{dA}{dt}=\frac{da_{ij}}{dt}~~~\mbox{and}~~~\frac{dAB}{dt}=B\frac{dA}{dt}+A\frac{dB}{dt} The derivative of the determinant is given by: \frac{d\det(A)}{dt}=D(\frac{d\vec{a}_1}{dt},...,\vec{a}_n)+ D(\vec{a}_1,\frac{d\vec{a}_2}{dt},...,\vec{a}_n)+...+D(\vec{a}_1,...,\frac{d\vec{a}_n}{dt}) When the rows of a matrix are considered as vectors the row rank of a matrix is the number of independent vectors in this set. Similar for the column rank. The row rank equals the column rank for each matrix.
Let \tilde{A}:\tilde{V}\rightarrow\tilde{V} be the complex extension of the real linear operator A:V\rightarrow V in a finite dimensional V. Then A and \tilde{A} have the same caracteristic equation.
When A_{ij}\in I\hspace{-1mm}R and \vec{v}_1+i\vec{v_2} is an eigenvector of A at eigenvalue \lambda=\lambda_1+i\lambda_2, than holds:
If \vec{k}_n are the columns of A, than the transformed space of A is given by: \[ R(A)==<\vec{k}_1,...,\vec{k}_n> \] If the columns \vec{k}_n of a n\times m matrix A are independent, than the nullspace {\cal N}(A)=\{\vec{0}\}.
The equation A\cdot\vec{x}=\vec{0} has exactly one solution \neq\vec{0} if \det(A)=0, and if \det(A)\neq0 the solution is \vec{0}.
Cramer's rule for the solution of systems of linear equations is: let the system be written as A\cdot\vec{x}=\vec{b}\equiv\vec{a}_1x_1+...+\vec{a}_nx_n=\vec{b} then x_j is given by: x_j=\frac{D(\vec{a}_1,...,\vec{a}_{j-1},\vec{b},\vec{a}_{j+1},...,\vec{a}_n)}{\det(A)}
Some common linear transformations are:
Transformation type | Equation |
---|---|
Projection on the line <\vec{a}> | P(\vec{x})=(\vec{a},\vec{x})\vec{a}/(\vec{a},\vec{a}) |
Projection on the plane (\vec{a},\vec{x})=0 | Q(\vec{x})=\vec{x}-P(\vec{x}) |
Mirror image in the line <\vec{a}> | S(\vec{x})=2P(\vec{x})-\vec{x} |
Mirror image in the plane (\vec{a},\vec{x})=0 | T(\vec{x})=2Q(\vec{x})-\vec{x}=\vec{x}-2P(\vec{x}) |
For a projection holds: \vec{x}-P_W(\vec{x})\perp P_W(\vec{x}) and P_W(\vec{x})\in W.
If for a transformation A holds: (A\vec{x},\vec{y})=(\vec{x},A\vec{y})=(A\vec{x},A\vec{y}), than A is a projection.
Let A:W\rightarrow W define a linear transformation; we define:
Than A(S) is a linear subspace of W and the {\it inverse transformation} A^\leftarrow(T) is a linear subspace of V. From this follows that A(V) is the {\it image space} of A, notation: {\cal R}(A). A^\leftarrow(\vec{0})=E_0 is a linear subspace of V, the {\it null space} of A, notation: {\cal N}(A). Then the following holds: {\rm dim}({\cal N}(A))+{\rm dim}({\cal R}(A))={\rm dim}(V)
The distance d between 2 points \vec{p} and \vec{q} is given by d(\vec{p},\vec{q})=\|\vec{p}-\vec{q}\|.
In I\hspace{-1mm}R^2 holds: The distance of a point \vec{p} to the line (\vec{a},\vec{x})+b=0 is d(\vec{p},\ell)=\frac{|(\vec{a},\vec{p})+b|}{|\vec{a}|} Similarly in I\hspace{-1mm}R^3: The distance of a point \vec{p} to the plane (\vec{a},\vec{x})+k=0 is d(\vec{p},V)=\frac{|(\vec{a},\vec{p})+k|}{|\vec{a}|} This can be generalized for I\hspace{-1mm}R^n and \mathbb{C}^n (theorem from Hesse).
The matrix A_\alpha^\beta transforms a vector given w.r.t. a basis \alpha into a vector w.r.t. a basis \beta. It is given by: A_\alpha^\beta=\left(\beta(A\vec{a}_1),...,\beta(A\vec{a}_n)\right) where \beta(\vec{x}) is the representation of the vector \vec{x} w.r.t. basis \beta.
The transformation matrix S_\alpha^\beta transforms vectors from coordinate system \alpha into coordinate system \beta: S_\alpha^\beta:=I\hspace{-1mm}I_\alpha^\beta=\left(\beta(\vec{a}_1),...,\beta(\vec{a}_n)\right) and S_\alpha^\beta\cdot S_\beta^\alpha=I\hspace{-1mm}I
The matrix of a transformation A is than given by: A_\alpha^\beta=\left(A_\alpha^\beta\vec{e}_1,...,A_\alpha^\beta\vec{e}_n\right) For the transformation of matrix operators to another coordinate system holds: A_\alpha^\delta=S_\lambda^\delta A_\beta^\lambda S_\alpha^\beta, A_\alpha^\alpha=S_\beta^\alpha A_\beta^\beta S_\alpha^\beta and (AB)_\alpha^\lambda=A_\beta^\lambda B_\alpha^\beta.
Further is A_\alpha^\beta=S_\alpha^\beta A_\alpha^\alpha, A_\beta^\alpha=A_\alpha^\alpha S_\beta^\alpha. A vector is transformed via X_\alpha=S_\alpha^\beta X_\beta.
The eigen values \lambda_i are independent of the chosen basis. The matrix of A in a basis of eigenvectors, with S the transformation matrix to this basis, S=(E_{\lambda_1},...,E_{\lambda_n}), is given by: \Lambda=S^{-1}AS={\rm diag}(\lambda_1,...,\lambda_n) When 0 is an eigen value of A than E_0(A)={\cal N}(A).
When \lambda is an eigen value of A holds: A^n\vec{x}=\lambda^n\vec{x}.
When W is an invariant subspace if the isometric transformation A with dim(A)<\infty, than also W^\perp is an invariante subspace.
Let A:V\rightarrow V be orthogonal with dim(V)<\infty. Than A is:
Direct orthogonal if \det(A)=+1. A describes a rotation. A rotation in I\hspace{-1mm}R^2 through angle \varphi is given by: R= \left(\begin{array}{cc} \cos(\varphi)&-\sin(\varphi)\\ \sin(\varphi)&\cos(\varphi) \end{array}\right) So the rotation angle \varphi is determined by Tr(A)=2\cos(\varphi) with 0\leq\varphi\leq\pi. Let \lambda_1 and \lambda_2 be the roots of the characteristic equation, than also holds: \Re(\lambda_1)=\Re(\lambda_2)=\cos(\varphi), and \lambda_1=\exp(i\varphi), \lambda_2=\exp(-i\varphi).
In I\hspace{-1mm}R^3 holds: \lambda_1=1, \lambda_2=\lambda_3^*=\exp(i\varphi). A rotation over E_{\lambda_1} is given by the matrix \left(\begin{array}{ccc} 1&0&0\\ 0&\cos(\varphi)&-\sin(\varphi)\\ 0&\sin(\varphi)&\cos(\varphi) \end{array}\right) Mirrored orthogonal if \det(A)=-1. Vectors from E_{-1} are mirrored by A w.r.t. the invariant subspace E^\perp_{-1}. A mirroring in I\hspace{-1mm}R^2 in <(\cos(\frac{1}{2}\varphi),\sin(\frac{1}{2}\varphi))> is given by: S= \left(\begin{array}{cc} \cos(\varphi)&\sin(\varphi)\\ \sin(\varphi)&-\cos(\varphi) \end{array}\right) Mirrored orthogonal transformations in I\hspace{-1mm}R^3 are rotational mirrorings: rotations of axis <\vec{a}_1> through angle \varphi and mirror plane <\vec{a}_1>^\perp. The matrix of such a transformation is given by: \left(\begin{array}{ccc} -1&0&0\\ 0&\cos(\varphi)&-\sin(\varphi)\\ 0&\sin(\varphi)&\cos(\varphi) \end{array}\right) For all orthogonal transformations O in I\hspace{-1mm}R^3 holds that O(\vec{x})\times O(\vec{y})=O(\vec{x}\times\vec{y}).
I\hspace{-1mm}R^n (n<\infty) can be decomposed in invariant subspaces with dimension 1 or 2 for each orthogonal transformation.
Theorem: for a n\times n matrix A the following statements are equivalent:
For each matrix B\in I\hspace{-1mm}M^{m\times n} holds: B^TB is symmetric.
If the transformations A and B are Hermitian, than their product AB is Hermitian if: [A,B]=AB-BA=0. [A,B] is called the commutator of A and B.
The eigenvalues of a Hermitian transformation belong to I\hspace{-1mm}R.
A matrix representation can be coupled with a Hermitian operator L. W.r.t. a basis \vec{e}_i it is given by L_{mn}=(\vec{e}_m,L\vec{e}_n).
Definition: the linear transformation A is normal in a complex vector space V if A^*A=AA^*. This is only the case if for its matrix S w.r.t. an orthonormal basis holds: A^\dagger A=AA^\dagger.
If A is normal holds:
Let the different roots of the characteristic equation of A be \beta_i with multiplicities n_i. Than the dimension of each eigenspace V_i equals n_i. These eigenspaces are mutually perpendicular and each vector \vec{x}\in V can be written in exactly one way as \vec{x}=\sum_i\vec{x}_i~~~\mbox{with}~~~\vec{x}_i\in V_i This can also be written as: \vec{x}_i=P_i\vec{x} where P_i is a projection on V_i. This leads to the {\it spectral mapping theorem}: let A be a normal transformation in a complex vector space V with dim(V)=n. Than:
Lemma: if E_\lambda is the eigenspace for eigenvalue \lambda from A_1, than E_\lambda is an invariant subspace of all transformations A_i. This means that if \vec{x}\in E_\lambda, than A_i\vec{x}\in E_\lambda.
Theorem. Consider m commuting Hermitian matrices A_i. Than there exists a unitary matrix U so that all matrices U^\dagger A_iU are diagonal. The columns of U are the common eigenvectors of all matrices A_j.
If all eigenvalues of a Hermitian linear transformation in a n-dimensional complex vector space differ, than the normalized eigenvector is known except for a phase factor \exp(i\alpha).
Definition: a commuting set Hermitian transformations is called complete if for each set of two common eigenvectors \vec{v}_i,\vec{v}_j there exists a transformation A_k so that \vec{v}_i and \vec{v}_j are eigenvectors with different eigenvalues of A_k.
Usually a commuting set is taken as small as possible. In quantum physics one speaks of commuting observables. The required number of commuting observables equals the number of quantum numbers required to characterize a state.
Due to (1) holds: (\vec{a},\vec{a})\in I\hspace{-1mm}R. The inner product space \mathbb{C}^n is the complex vector space on which a complex inner product is defined by: (\vec{a},\vec{b})=\sum_{i=1}^na_i^*b_i For function spaces holds: (f,g)=\int\limits_a^bf^*(t)g(t)dt For each \vec{a} the length \|\vec{a}\| is defined by: \|\vec{a}\|=\sqrt{(\vec{a},\vec{a})}. The following holds: \|\vec{a}\|-\|\vec{b}\|\leq\|\vec{a}+\vec{b}\|\leq\|\vec{a}\|+\|\vec{b}\|, and with \varphi the angle between \vec{a} and \vec{b} holds: (\vec{a},\vec{b})=\|\vec{a}\|\cdot\|\vec{b}\|\cos(\varphi).
Let \{\vec{a}_1,...,\vec{a}_n\} be a set of vectors in an inner product space V. Than the {\it Gramian G} of this set is given by: G_{ij}=(\vec{a}_i,\vec{a}_j). The set of vectors is independent if and only if \det(G)=0.
A set is {\it orthonormal} if (\vec{a}_i,\vec{a}_j)=\delta_{ij}. If \vec{e}_1,\vec{e}_2,... form an orthonormal row in an infinite dimensional vector space Bessel's inequality holds: \|\vec{x}\|^2\geq\sum_{i=1}^\infty|(\vec{e}_i,\vec{x})|^2 The equal sign holds if and only if \lim\limits_{n\rightarrow\infty}\|\vec{x}_n-\vec{x}\|=0.
The inner product space \ell^2 is defined in \mathbb{C}^\infty by: \ell^2=\left\{\vec{a}=(a_1,a_2,...)~|~\sum_{n=1}^\infty|a_n|^2<\infty\right\} A space is called a {\it Hilbert space} if it is \ell^2 and if also holds: \lim\limits_{n\rightarrow\infty}|a_{n+1}-a_n|=0.
Than there exists a Laplace transform for f.
The Laplace transformation is a generalisation of the Fourier transformation. The Laplace transform of a function f(t) is, with s\in\mathbb{C} and t\geq0: F(s)=\int\limits_0^\infty f(t){\rm e}^{-st}dt The Laplace transform of the derivative of a function is given by: {\cal L}\left(f^{(n)}(t)\right)=-f^{(n-1)}(0)-sf^{(n-2)}(0)-...-s^{n-1}f(0)+s^nF(s) The operator \cal L has the following properties:
If s\in I\hspace{-1mm}R than holds \Re(\lambda f)={\cal L}(\Re(f)) and \Im(\lambda f)={\cal L}(\Im(f)).
For some often occurring functions holds:
f(t)= | F(s)={\cal L}(f(t))= |
---|---|
\displaystyle\frac{t^n}{n!}{\rm e}^{at} | (s-a)^{-n-1} |
{\rm e}^{at}\cos(\omega t) | \displaystyle\frac{s-a}{(s-a)^2+\omega^2} |
{\rm e}^{at}\sin(\omega t) | \displaystyle\frac{\omega}{(s-a)^2+\omega^2} |
\delta(t-a) | \exp(-as) |
If {\cal L}(f)=F_1\cdot F_2, than is f(t)=f_1*f_2.
Assume that \lambda=\alpha+i\beta is an eigenvalue with eigenvector \vec{v}, than \lambda^* is also an eigenvalue for eigenvector \vec{v}^*. Decompose \vec{v}=\vec{u}+i\vec{w}, than the real solutions are c_1[\vec{u}\cos(\beta t)-\vec{w}\sin(\beta t)]{\rm e}^{\alpha t}+c_2[\vec{v}\cos(\beta t)+\vec{u}\sin(\beta t)]{\rm e}^{\alpha t}
There are two solution strategies for the equation \ddot{\vec{x}}=A\vec{x}:
Starting with the equation ax^2+2bxy+cy^2+dx+ey+f=0 we have |A|=ac-b^2. An ellipse has |A|>0, a parabola |A|=0 and a hyperbole |A|<0. In polar coordinates this can be written as: r=\frac{ep}{1-e\cos(\theta)} An ellipse has e<1, a parabola e=1 and a hyperbola e>1.
Rank 2: p\frac{x^2}{a^2}+q\frac{y^2}{b^2}+r\frac{z}{c^2}=d
Rank 1: py^2+qx=d