Processing math: 8%

5. Linear algebra

5.1 Vector spaces

G is a group for the operation if:
  1. a,bGabG: a group is closed.
  2. (ab)c=a(bc): a group is associative.
  3. eG so that ae=ea=a: there exists a unit element.
  4. aG¯aG so that a¯a=e: each element has an inverse.
  5. If

  6. ab=ba

the group is called Abelian or commutative. Vector spaces form an Abelian group for addition and multiplication: 1a=a, λ(μa)=(λμ)a, (λ+μ)(a+b)=λa+λb+μa+μb.

W is a linear subspace if w1,w2W holds: λw1+μw2W.

W is an invariant subspace of V for the operator A if wW holds: AwW.

5.2 Basis

For an orthogonal basis holds: (ei,ej)=cδij. For an orthonormal basis holds: (ei,ej)=δij.

The set vectors {an} is linear independent if: iλiai=0    iλi=0 The set {an} is a basis if it is 1. independent and 2. V=<a1,a2,...>=λiai.

5.3 Matrix calculus

5.3.1 Basic operations

For the matrix multiplication of matrices A=aij and B=bkl holds with r the row index and k the column index: Ar1k1Br2k2=Cr1k2  ,  (AB)ij=kaikbkj where r is the number of rows and k the number of columns.

The transpose of A is defined by: aTij=aji. For this holds (AB)T=BTAT and (AT)1=(A1)T. For the inverse matrix holds: (AB)1=B1A1. The inverse matrix A1 has the property that AA1=II and can be found by diagonalization: (Aij|II)(II|A1ij).

The inverse of a 2×2 matrix is: (abcd)1=1adbc(dbca)

The determinant function D=det is defined by: \det(A)=D(\vec{a}_{*1},\vec{a}_{*2},...,\vec{a}_{*n}) For the determinant \det(A) of a matrix A holds: \det(AB)=\det(A)\cdot\det(B). Een 2\times2 matrix has determinant: \det\left(\begin{array}{cc}a&b\\ c&d \end{array}\right)=ad-cb The derivative of a matrix is a matrix with the derivatives of the coefficients: \frac{dA}{dt}=\frac{da_{ij}}{dt}~~~\mbox{and}~~~\frac{dAB}{dt}=B\frac{dA}{dt}+A\frac{dB}{dt} The derivative of the determinant is given by: \frac{d\det(A)}{dt}=D(\frac{d\vec{a}_1}{dt},...,\vec{a}_n)+ D(\vec{a}_1,\frac{d\vec{a}_2}{dt},...,\vec{a}_n)+...+D(\vec{a}_1,...,\frac{d\vec{a}_n}{dt}) When the rows of a matrix are considered as vectors the row rank of a matrix is the number of independent vectors in this set. Similar for the column rank. The row rank equals the column rank for each matrix.

Let \tilde{A}:\tilde{V}\rightarrow\tilde{V} be the complex extension of the real linear operator A:V\rightarrow V in a finite dimensional V. Then A and \tilde{A} have the same caracteristic equation.

When A_{ij}\in I\hspace{-1mm}R and \vec{v}_1+i\vec{v_2} is an eigenvector of A at eigenvalue \lambda=\lambda_1+i\lambda_2, than holds:

  1. A\vec{v}_1=\lambda_1\vec{v}_1-\lambda_2\vec{v}_2 and A\vec{v}_2=\lambda_2\vec{v}_1+\lambda_1\vec{v}_2.
  2. \vec{v}^{~*}=\vec{v}_1-i\vec{v}_2 is an eigenvalue at \lambda^*=\lambda_1-i\lambda_2.
  3. The linear span <\vec{v}_1,\vec{v}_2> is an invariant subspace of A.

If \vec{k}_n are the columns of A, than the transformed space of A is given by: \[ R(A)==<\vec{k}_1,...,\vec{k}_n> \] If the columns \vec{k}_n of a n\times m matrix A are independent, than the nullspace {\cal N}(A)=\{\vec{0}\}.

5.3.2 Matrix equations

We start with the equation A\cdot\vec{x}=\vec{b} and \vec{b}\neq\vec{0}. If \det(A)=0 the only solution is \vec{0}. If \det(A)\neq0 there exists exactly one solution \neq\vec{0}.

The equation A\cdot\vec{x}=\vec{0} has exactly one solution \neq\vec{0} if \det(A)=0, and if \det(A)\neq0 the solution is \vec{0}.

Cramer's rule for the solution of systems of linear equations is: let the system be written as A\cdot\vec{x}=\vec{b}\equiv\vec{a}_1x_1+...+\vec{a}_nx_n=\vec{b} then x_j is given by: x_j=\frac{D(\vec{a}_1,...,\vec{a}_{j-1},\vec{b},\vec{a}_{j+1},...,\vec{a}_n)}{\det(A)}

5.4 Linear transformations

A transformation A is linear if: A(\lambda\vec{x}+\beta\vec{y})=\lambda A\vec{x}+\beta A\vec{y}.

Some common linear transformations are:

Transformation typeEquation
Projection on the line <\vec{a}> P(\vec{x})=(\vec{a},\vec{x})\vec{a}/(\vec{a},\vec{a})
Projection on the plane (\vec{a},\vec{x})=0 Q(\vec{x})=\vec{x}-P(\vec{x})
Mirror image in the line <\vec{a}> S(\vec{x})=2P(\vec{x})-\vec{x}
Mirror image in the plane (\vec{a},\vec{x})=0 T(\vec{x})=2Q(\vec{x})-\vec{x}=\vec{x}-2P(\vec{x})

For a projection holds: \vec{x}-P_W(\vec{x})\perp P_W(\vec{x}) and P_W(\vec{x})\in W.

If for a transformation A holds: (A\vec{x},\vec{y})=(\vec{x},A\vec{y})=(A\vec{x},A\vec{y}), than A is a projection.

Let A:W\rightarrow W define a linear transformation; we define:

  1. If S is a subset of V: A(S):=\{A\vec{x}\in W|\vec{x}\in S\}
  2. If T is a subset of W: A^\leftarrow(T):=\{\vec{x}\in V|A(\vec{x})\in T\}

Than A(S) is a linear subspace of W and the {\it inverse transformation} A^\leftarrow(T) is a linear subspace of V. From this follows that A(V) is the {\it image space} of A, notation: {\cal R}(A). A^\leftarrow(\vec{0})=E_0 is a linear subspace of V, the {\it null space} of A, notation: {\cal N}(A). Then the following holds: {\rm dim}({\cal N}(A))+{\rm dim}({\cal R}(A))={\rm dim}(V)

5.5 Plane and line

The equation of a line that contains the points \vec{a} and \vec{b} is: \vec{x}=\vec{a}+\lambda(\vec{b}-\vec{a})=\vec{a}+\lambda\vec{r} The equation of a plane is: \vec{x}=\vec{a}+\lambda(\vec{b}-\vec{a})+\mu(\vec{c}-\vec{a})=\vec{a}+\lambda\vec{r}_1+\mu\vec{r}_2 When this is a plane in I\hspace{-1mm}R^3, the normal vector to this plane is given by: \vec{n}_V=\frac{\vec{r}_1\times\vec{r}_2}{|\vec{r}_1\times\vec{r}_2|} A line can also be described by the points for which the line equation \ell: (\vec{a},\vec{x})+b=0 holds, and for a plane V: (\vec{a},\vec{x})+k=0. The normal vector to V is than: \vec{a}/|\vec{a}|.

The distance d between 2 points \vec{p} and \vec{q} is given by d(\vec{p},\vec{q})=\|\vec{p}-\vec{q}\|.

In I\hspace{-1mm}R^2 holds: The distance of a point \vec{p} to the line (\vec{a},\vec{x})+b=0 is d(\vec{p},\ell)=\frac{|(\vec{a},\vec{p})+b|}{|\vec{a}|} Similarly in I\hspace{-1mm}R^3: The distance of a point \vec{p} to the plane (\vec{a},\vec{x})+k=0 is d(\vec{p},V)=\frac{|(\vec{a},\vec{p})+k|}{|\vec{a}|} This can be generalized for I\hspace{-1mm}R^n and \mathbb{C}^n (theorem from Hesse).

5.6 Coordinate transformations

The linear transformation A from I\hspace{-1mm}K^n\rightarrow I\hspace{-1mm}K^m is given by (I\hspace{-1mm}K=I\hspace{-1mm}R or \mathbb{C}): \vec{y}=A^{m\times n}\vec{x} where a column of A is the image of a base vector in the original.

The matrix A_\alpha^\beta transforms a vector given w.r.t. a basis \alpha into a vector w.r.t. a basis \beta. It is given by: A_\alpha^\beta=\left(\beta(A\vec{a}_1),...,\beta(A\vec{a}_n)\right) where \beta(\vec{x}) is the representation of the vector \vec{x} w.r.t. basis \beta.

The transformation matrix S_\alpha^\beta transforms vectors from coordinate system \alpha into coordinate system \beta: S_\alpha^\beta:=I\hspace{-1mm}I_\alpha^\beta=\left(\beta(\vec{a}_1),...,\beta(\vec{a}_n)\right) and S_\alpha^\beta\cdot S_\beta^\alpha=I\hspace{-1mm}I

The matrix of a transformation A is than given by: A_\alpha^\beta=\left(A_\alpha^\beta\vec{e}_1,...,A_\alpha^\beta\vec{e}_n\right) For the transformation of matrix operators to another coordinate system holds: A_\alpha^\delta=S_\lambda^\delta A_\beta^\lambda S_\alpha^\beta, A_\alpha^\alpha=S_\beta^\alpha A_\beta^\beta S_\alpha^\beta and (AB)_\alpha^\lambda=A_\beta^\lambda B_\alpha^\beta.

Further is A_\alpha^\beta=S_\alpha^\beta A_\alpha^\alpha, A_\beta^\alpha=A_\alpha^\alpha S_\beta^\alpha. A vector is transformed via X_\alpha=S_\alpha^\beta X_\beta.

5.7 Eigen values

The eigenvalue equation A\vec{x}=\lambda\vec{x} with eigenvalues \lambda can be solved with (A-\lambda I\hspace{-1mm}I)=\vec{0}\Rightarrow\det(A-\lambda I\hspace{-1mm}I)=0. The eigenvalues follow from this characteristic equation. The following is true: \det(A)=\prod\limits_i\lambda_i and {\rm Tr}(A)=\sum\limits_ia_{ii}=\sum\limits_i\lambda_i.

The eigen values \lambda_i are independent of the chosen basis. The matrix of A in a basis of eigenvectors, with S the transformation matrix to this basis, S=(E_{\lambda_1},...,E_{\lambda_n}), is given by: \Lambda=S^{-1}AS={\rm diag}(\lambda_1,...,\lambda_n) When 0 is an eigen value of A than E_0(A)={\cal N}(A).

When \lambda is an eigen value of A holds: A^n\vec{x}=\lambda^n\vec{x}.

5.8 Transformation types

5.8.1 Isometric transformations

A transformation is isometric when: \|A\vec{x}\|=\|\vec{x}\|. This implies that the eigen values of an isometric transformation are given by \lambda=\exp(i\varphi)\Rightarrow|\lambda|=1. Than also holds: (A\vec{x},A\vec{y})=(\vec{x},\vec{y}).

When W is an invariant subspace if the isometric transformation A with dim(A)<\infty, than also W^\perp is an invariante subspace.

5.8.2 Orthogonal transformations

A transformation A is {\it orthogonal} if A is isometric and the inverse A^\leftarrow exists. For an orthogonal transformation O holds O^TO=I\hspace{-1mm}I, so: O^T=O^{-1}. If A and B are orthogonal, than AB and A^{-1} are also orthogonal.

Let A:V\rightarrow V be orthogonal with dim(V)<\infty. Than A is:

Direct orthogonal if \det(A)=+1. A describes a rotation. A rotation in I\hspace{-1mm}R^2 through angle \varphi is given by: R= \left(\begin{array}{cc} \cos(\varphi)&-\sin(\varphi)\\ \sin(\varphi)&\cos(\varphi) \end{array}\right) So the rotation angle \varphi is determined by Tr(A)=2\cos(\varphi) with 0\leq\varphi\leq\pi. Let \lambda_1 and \lambda_2 be the roots of the characteristic equation, than also holds: \Re(\lambda_1)=\Re(\lambda_2)=\cos(\varphi), and \lambda_1=\exp(i\varphi), \lambda_2=\exp(-i\varphi).

In I\hspace{-1mm}R^3 holds: \lambda_1=1, \lambda_2=\lambda_3^*=\exp(i\varphi). A rotation over E_{\lambda_1} is given by the matrix \left(\begin{array}{ccc} 1&0&0\\ 0&\cos(\varphi)&-\sin(\varphi)\\ 0&\sin(\varphi)&\cos(\varphi) \end{array}\right) Mirrored orthogonal if \det(A)=-1. Vectors from E_{-1} are mirrored by A w.r.t. the invariant subspace E^\perp_{-1}. A mirroring in I\hspace{-1mm}R^2 in <(\cos(\frac{1}{2}\varphi),\sin(\frac{1}{2}\varphi))> is given by: S= \left(\begin{array}{cc} \cos(\varphi)&\sin(\varphi)\\ \sin(\varphi)&-\cos(\varphi) \end{array}\right) Mirrored orthogonal transformations in I\hspace{-1mm}R^3 are rotational mirrorings: rotations of axis <\vec{a}_1> through angle \varphi and mirror plane <\vec{a}_1>^\perp. The matrix of such a transformation is given by: \left(\begin{array}{ccc} -1&0&0\\ 0&\cos(\varphi)&-\sin(\varphi)\\ 0&\sin(\varphi)&\cos(\varphi) \end{array}\right) For all orthogonal transformations O in I\hspace{-1mm}R^3 holds that O(\vec{x})\times O(\vec{y})=O(\vec{x}\times\vec{y}).

I\hspace{-1mm}R^n (n<\infty) can be decomposed in invariant subspaces with dimension 1 or 2 for each orthogonal transformation.

5.8.3 Unitary transformations

Let V be a complex space on which an inner product is defined. Than a linear transformation U is {\it unitary} if U is isometric {\it and} its inverse transformation A^\leftarrow exists. A n\times n matrix is unitary if U^HU=I\hspace{-1mm}I. It has determinant |\det(U)|=1. Each isometric transformation in a finite-dimensional complex vector space is unitary.

Theorem: for a n\times n matrix A the following statements are equivalent:

  1. A is unitary,
  2. The columns of A are an orthonormal set,
  3. The rows of A are an orthonormal set.

5.8.4 Symmetric transformations

A transformation A on I\hspace{-1mm}R^n is symmetric if (A\vec{x},\vec{y})=(\vec{x},A\vec{y}). A matrix A\in I\hspace{-1mm}M^{n\times n} is symmetric if A=A^T. A linear operator is only symmetric if its matrix w.r.t. an arbitrary basis is symmetric. All eigenvalues of a symmetric transformation belong to I\hspace{-1mm}R. The different eigenvectors are mutually perpendicular. If A is symmetric, than A^T=A=A^H on an orthogonal basis.

For each matrix B\in I\hspace{-1mm}M^{m\times n} holds: B^TB is symmetric.

5.8.5 Hermitian transformations

A transformation H:V\rightarrow V with V=\mathbb{C}^n is Hermitian if (H\vec{x},\vec{y})=(\vec{x},H\vec{y}). The Hermitian conjugated transformation A^H of A is: [a_{ij}]^H=[a_{ji}^*]. An alternative notation is: A^H=A^\dagger. The inner product of two vectors \vec{x} and \vec{y} can now be written in the form: (\vec{x},\vec{y})=\vec{x}^H\vec{y}.

If the transformations A and B are Hermitian, than their product AB is Hermitian if: [A,B]=AB-BA=0. [A,B] is called the commutator of A and B.

The eigenvalues of a Hermitian transformation belong to I\hspace{-1mm}R.

A matrix representation can be coupled with a Hermitian operator L. W.r.t. a basis \vec{e}_i it is given by L_{mn}=(\vec{e}_m,L\vec{e}_n).

5.8.6 Normal transformations

For each linear transformation A in a complex vector space V there exists exactly one linear transformation B so that (A\vec{x},\vec{y})=(\vec{x},B\vec{y}). This B is called the adjungated transformation of A. Notation: B=A^*. The following holds: (CD)^*=D^*C^*. A^*=A^{-1} if A is unitary and A^*=A if A is Hermitian.

Definition: the linear transformation A is normal in a complex vector space V if A^*A=AA^*. This is only the case if for its matrix S w.r.t. an orthonormal basis holds: A^\dagger A=AA^\dagger.

If A is normal holds:

  1. For all vectors \vec{x}\in V and a normal transformation A holds: (A\vec{x},A\vec{y})=(A^*A\vec{x},\vec{y})=(AA^*\vec{x},\vec{y})=(A^*\vec{x},A^*\vec{y})
  2. \vec{x} is an eigenvector of A if and only if \vec{x} is an eigenvector of A^*.
  3. Eigenvectors of A for different eigenvalues are mutually perpendicular.
  4. If E_\lambda if an eigenspace from A than the orthogonal complement E_\lambda^\perp is an invariant subspace of A.

Let the different roots of the characteristic equation of A be \beta_i with multiplicities n_i. Than the dimension of each eigenspace V_i equals n_i. These eigenspaces are mutually perpendicular and each vector \vec{x}\in V can be written in exactly one way as \vec{x}=\sum_i\vec{x}_i~~~\mbox{with}~~~\vec{x}_i\in V_i This can also be written as: \vec{x}_i=P_i\vec{x} where P_i is a projection on V_i. This leads to the {\it spectral mapping theorem}: let A be a normal transformation in a complex vector space V with dim(V)=n. Than:

  1. There exist projection transformations P_i, 1\leq i\leq p, with the properties and complex numbers \alpha_1,...,\alpha_p so that A=\alpha_1P_1+...+\alpha_pP_p.
  2. If A is unitary than holds |\alpha_i|=1~\forall i.
  3. If A is Hermitian than \alpha_i\in I\hspace{-1mm}R~\forall i.

5.8.7 Complete systems of commuting Hermitian transformations

Consider m Hermitian linear transformations A_i in a n dimensional complex inner product space V. Assume they mutually commute.

Lemma: if E_\lambda is the eigenspace for eigenvalue \lambda from A_1, than E_\lambda is an invariant subspace of all transformations A_i. This means that if \vec{x}\in E_\lambda, than A_i\vec{x}\in E_\lambda.

Theorem. Consider m commuting Hermitian matrices A_i. Than there exists a unitary matrix U so that all matrices U^\dagger A_iU are diagonal. The columns of U are the common eigenvectors of all matrices A_j.

If all eigenvalues of a Hermitian linear transformation in a n-dimensional complex vector space differ, than the normalized eigenvector is known except for a phase factor \exp(i\alpha).

Definition: a commuting set Hermitian transformations is called complete if for each set of two common eigenvectors \vec{v}_i,\vec{v}_j there exists a transformation A_k so that \vec{v}_i and \vec{v}_j are eigenvectors with different eigenvalues of A_k.

Usually a commuting set is taken as small as possible. In quantum physics one speaks of commuting observables. The required number of commuting observables equals the number of quantum numbers required to characterize a state.

5.9 Homogeneous coordinates

Homogeneous coordinates are used if one wants to combine both rotations and translations in one} matrix transformation. An extra coordinate is introduced to describe the non-linearities. Homogeneous coordinates are derived from cartesian coordinates as follows: \left(\begin{array}{c}x\\ y\\ z\end{array}\right)_{\rm cart}= \left(\begin{array}{c}wx\\ wy\\ wz\\ w\end{array}\right)_{\rm hom}= \left(\begin{array}{c}X\\ Y\\ Z\\ w\end{array}\right)_{\rm hom} so x=X/w, y=Y/w and z=Z/w. Transformations in homogeneous coordinates are described by the following matrices:

  1. Translation along vector (X_0, Y_0, Z_0, w_0): T=\left(\begin{array}{cccc} w_0&0&0&X_0\\ 0&w_0&0&Y_0\\ 0&0&w_0&Z_0\\ 0&0&0&w_0 \end{array}\right)
  2. Rotations of the x,y,z axis, resp. through angles \alpha,\beta,\gamma: R_x(\alpha)=\left(\begin{array}{cccc} 1&0&0&0\\ 0&\cos\alpha&-\sin\alpha&0\\ 0&\sin\alpha&\cos\alpha&0\\ 0&0&0&1 \end{array}\right)~~~~ R_y(\beta)=\left(\begin{array}{cccc} \cos\beta&0&\sin\beta&0\\ 0&1&0&0\\ -\sin\beta&0&\cos\beta&0\\ 0&0&0&1 \end{array}\right)~~~~ R_z(\gamma)=\left(\begin{array}{cccc} \cos\gamma&-\sin\gamma&0&0\\ \sin\gamma&\cos\gamma&0&0\\ 0&0&1&0\\ 0&0&0&1 \end{array}\right)
  3. A perspective projection on image plane z=c with the center of projection in the origin. This transformation has no inverse. P(z=c)=\left(\begin{array}{cccc} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&1/c&0 \end{array}\right)

5.10 Inner product spaces

A complex inner product on a complex vector space is defined as follows:

  1. (\vec{a},\vec{b})=\overline{(\vec{b},\vec{a})},
  2. (\vec{a},\beta_1\vec{b}_1+\beta_2\vec{b}_2)=\beta_1(\vec{a},\vec{b}_1)+\beta_2(\vec{a},\vec{b}_2) for all \vec{a},\vec{b}_1,\vec{b}_2\in V and \beta_1,\beta_2\in\mathbb{C}.
  3. (\vec{a},\vec{a})\geq0 for all \vec{a}\in V, (\vec{a},\vec{a})=0 if and only if \vec{a}=\vec{0}.

Due to (1) holds: (\vec{a},\vec{a})\in I\hspace{-1mm}R. The inner product space \mathbb{C}^n is the complex vector space on which a complex inner product is defined by: (\vec{a},\vec{b})=\sum_{i=1}^na_i^*b_i For function spaces holds: (f,g)=\int\limits_a^bf^*(t)g(t)dt For each \vec{a} the length \|\vec{a}\| is defined by: \|\vec{a}\|=\sqrt{(\vec{a},\vec{a})}. The following holds: \|\vec{a}\|-\|\vec{b}\|\leq\|\vec{a}+\vec{b}\|\leq\|\vec{a}\|+\|\vec{b}\|, and with \varphi the angle between \vec{a} and \vec{b} holds: (\vec{a},\vec{b})=\|\vec{a}\|\cdot\|\vec{b}\|\cos(\varphi).

Let \{\vec{a}_1,...,\vec{a}_n\} be a set of vectors in an inner product space V. Than the {\it Gramian G} of this set is given by: G_{ij}=(\vec{a}_i,\vec{a}_j). The set of vectors is independent if and only if \det(G)=0.

A set is {\it orthonormal} if (\vec{a}_i,\vec{a}_j)=\delta_{ij}. If \vec{e}_1,\vec{e}_2,... form an orthonormal row in an infinite dimensional vector space Bessel's inequality holds: \|\vec{x}\|^2\geq\sum_{i=1}^\infty|(\vec{e}_i,\vec{x})|^2 The equal sign holds if and only if \lim\limits_{n\rightarrow\infty}\|\vec{x}_n-\vec{x}\|=0.

The inner product space \ell^2 is defined in \mathbb{C}^\infty by: \ell^2=\left\{\vec{a}=(a_1,a_2,...)~|~\sum_{n=1}^\infty|a_n|^2<\infty\right\} A space is called a {\it Hilbert space} if it is \ell^2 and if also holds: \lim\limits_{n\rightarrow\infty}|a_{n+1}-a_n|=0.

5.11 The Laplace transformation

The class LT exists of functions for which holds:

  1. On each interval [0,A], A>0 there are no more than a finite number of discontinuities and each discontinuity has an upper - and lower limit,
  2. \exists t_0\in[0,\infty> and a,M\in I\hspace{-1mm}R so that for t\geq t_0 holds: $|f(t)|\exp(-at)

Than there exists a Laplace transform for f.

The Laplace transformation is a generalisation of the Fourier transformation. The Laplace transform of a function f(t) is, with s\in\mathbb{C} and t\geq0: F(s)=\int\limits_0^\infty f(t){\rm e}^{-st}dt The Laplace transform of the derivative of a function is given by: {\cal L}\left(f^{(n)}(t)\right)=-f^{(n-1)}(0)-sf^{(n-2)}(0)-...-s^{n-1}f(0)+s^nF(s) The operator \cal L has the following properties:

  1. Equal shapes: if a>0 than {\cal L}\left(f(at)\right)=\frac{1}{a}F\left(\frac{s}{a}\right)
  2. Damping: {\cal L}\left({\rm e}^{-at}f(t)\right)=F(s+a)
  3. Translation: If a>0 and g is defined by g(t)=f(t-a) if t>a and g(t)=0 for t\leq a, than holds: {\cal L}\left(g(t)\right)={\rm e}^{-sa}{\cal L}(f(t)).

If s\in I\hspace{-1mm}R than holds \Re(\lambda f)={\cal L}(\Re(f)) and \Im(\lambda f)={\cal L}(\Im(f)).

For some often occurring functions holds:

f(t)=F(s)={\cal L}(f(t))=
\displaystyle\frac{t^n}{n!}{\rm e}^{at} (s-a)^{-n-1}
{\rm e}^{at}\cos(\omega t) \displaystyle\frac{s-a}{(s-a)^2+\omega^2}
{\rm e}^{at}\sin(\omega t) \displaystyle\frac{\omega}{(s-a)^2+\omega^2}
\delta(t-a) \exp(-as)

5.12 The convolution

The convolution integral is defined by: (f*g)(t)=\int\limits_0^tf(u)g(t-u)du The convolution has the following properties:

  1. f*g\inLT
  2. {\cal L}(f*g)={\cal L}(f)\cdot{\cal L}(g)
  3. Distribution: f*(g+h)=f*g+f*h
  4. Commutative: f*g=g*f
  5. Homogenity: f*(\lambda g)=\lambda f*g

If {\cal L}(f)=F_1\cdot F_2, than is f(t)=f_1*f_2.

5.13 Systems of linear differential equations

We start with the equation \dot{\vec{x}}=A\vec{x}. Assume that \vec{x}=\vec{v}\exp(\lambda t), than follows: A\vec{v}=\lambda\vec{v}. In the 2\times2 case holds:

  1. \lambda_1=\lambda_2: than \vec{x}(t)=\sum\vec{v}_i\exp(\lambda_it).
  2. \lambda_1\neq\lambda_2: than \vec{x}(t)=(\vec{u}t+\vec{v})\exp(\lambda t).

Assume that \lambda=\alpha+i\beta is an eigenvalue with eigenvector \vec{v}, than \lambda^* is also an eigenvalue for eigenvector \vec{v}^*. Decompose \vec{v}=\vec{u}+i\vec{w}, than the real solutions are c_1[\vec{u}\cos(\beta t)-\vec{w}\sin(\beta t)]{\rm e}^{\alpha t}+c_2[\vec{v}\cos(\beta t)+\vec{u}\sin(\beta t)]{\rm e}^{\alpha t}

There are two solution strategies for the equation \ddot{\vec{x}}=A\vec{x}:

  1. Let \vec{x}=\vec{v}\exp(\lambda t)\Rightarrow\det(A-\lambda^2 I\hspace{-1mm}I)=0.
  2. Introduce: \dot{x}=u and \dot{y}=v, this leads to \ddot{x}=\dot{u} and \ddot{y}=\dot{v}. This transforms a n-dimensional set of second order equations into a 2n-dimensional set of first order equations.

5.14 Quadratic forms

5.14.1 Quadratic forms in I\hspace{-1mm}R^2

The general equation of a quadratic form is: \vec{x}^TA\vec{x}+2\vec{x}^TP+S=0. Here, A is a symmetric matrix. If \Lambda=S^{-1}AS={\rm diag}(\lambda_1,...,\lambda_n) holds: \vec{u}^T\Lambda\vec{u}+2\vec{u}^TP+S=0, so all cross terms are 0. \vec{u}=(u,v,w) should be chosen so that det(S)=+1, to maintain the same orientation as the system (x,y,z).

Starting with the equation ax^2+2bxy+cy^2+dx+ey+f=0 we have |A|=ac-b^2. An ellipse has |A|>0, a parabola |A|=0 and a hyperbole |A|<0. In polar coordinates this can be written as: r=\frac{ep}{1-e\cos(\theta)} An ellipse has e<1, a parabola e=1 and a hyperbola e>1.

5.14.2 Quadratic surfaces in I\hspace{-1mm}R^3

Rank 3: p\frac{x^2}{a^2}+q\frac{y^2}{b^2}+r\frac{z^2}{c^2}=d
  1. Ellipsoid: p=q=r=d=1, a,b,c are the lengths of the semi axes.
  2. Single-bladed hyperboloid: p=q=d=1, r=-1.
  3. Double-bladed hyperboloid: r=d=1, p=q=-1.
  4. Cone: p=q=1, r=-1, d=0.

Rank 2: p\frac{x^2}{a^2}+q\frac{y^2}{b^2}+r\frac{z}{c^2}=d

  1. Elliptic paraboloid: p=q=1, r=-1, d=0.
  2. Hyperbolic paraboloid: p=r=-1, q=1, d=0.
  3. Elliptic cylinder: p=q=-1, r=d=0.
  4. Hyperbolic cylinder: p=d=1, q=-1, r=0.
  5. Pair of planes: p=1, q=-1, d=0.

Rank 1: py^2+qx=d

  1. Parabolic cylinder: p,q>0.
  2. Parallel pair of planes: d>0, q=0, p\neq 0.
  3. Double plane: p\neq 0, q=d=0.