Processing math: 7%

4. Differential equations

4.1 Linear differential equations

4.1.1 First order linear DE

The general solution of a linear differential equation is given by yA=yH+yP, where yH is the solution of the homogeneous equation and yP is a particular solution.

A first order differential equation is given by: y(x)+a(x)y(x)=b(x). Its homogeneous equation is y(x)+a(x)y(x)=0.

The solution of the homogeneous equation is given by yH=kexp(a(x)dx) Suppose that a(x)=a=constant.

Substitution of exp(λx) in the homogeneous equation leads to the characteristic equation λ+a=0λ=a.

Suppose b(x)=αexp(μx). Than one can distinguish two cases:

  1. λμ: a particular solution is: yP=exp(μx)
  2. λ=μ: a particular solution is: yP=xexp(μx)

When a DE is solved by variation of parameters one writes: yP(x)=yH(x)f(x), and than one solves f(x) from this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is given by: y. If c(x)=c=constant there exists a particular solution y_{\rm P}=c/b.

Substitution of y=\exp(\lambda x) leads to the characteristic equation \lambda^2+a\lambda+b=0.

There are now 2 possibilities:

  1. \lambda_1\neq\lambda_2: than y_{\rm H}=\alpha\exp(\lambda_1 x)+\beta\exp(\lambda_2 x).
  2. \lambda_1=\lambda_2=\lambda: than y_{\rm H}=(\alpha +\beta x)\exp(\lambda x).

If c(x)=p(x)\exp(\mu x) where p(x) is a polynomial there are 3 possibilities:

  1. \lambda_1,\lambda_2\neq\mu: y_{\rm P}=q(x)\exp(\mu x).
  2. \lambda_1=\mu,\lambda_2\neq\mu: y_{\rm P}=xq(x)\exp(\mu x).
  3. \lambda_1=\lambda_2=\mu: y_{\rm P}=x^2q(x)\exp(\mu x).
where q(x) is a polynomial of the same order as p(x).

When: y''(x)+\omega^2y(x)=\omega f(x) and y(0)=y'(0)=0 follows: y(x)=\int\limits_0^xf(x)\sin(\omega(x-t))dt.

4.1.3 The Wronskian

We start with the LDE y''(x)+p(x)y'(x)+q(x)y(x)=0 and the two initial conditions y(x_0)=K_0 and y'(x_0)=K_1. When p(x) and q(x) are continuous on the open interval I there exists a unique solution y(x) on this interval.

The general solution can than be written as y(x)=c_1y_1(x)+c_2y_2(x) and y_1 and y_2 are linear independent. These are also all solutions of the LDE.

The Wronskian is defined by: W(y_1,y_2)= \left|\begin{array}{cc} y_1&y_2\\ y'_1&y'_2 \end{array}\right|=y_1y'_2-y_2y'_1

y_1 and y_2 are linear independent if and only if on the interval I when \exists x_0\in I so that holds: W(y_1(x_0),y_2(x_0))=0.

4.1.4 Power series substitution

When a series y=\sum a_nx^n is substituted in the LDE with constant coefficients y''(x)+py'(x)+qy(x)=0 this leads to: \sum_n\left[n(n-1)a_nx^{n-2}+pna_nx^{n-1}+qa_nx^n\right]=0 Setting coefficients for equal powers of x equal gives: (n+2)(n+1)a_{n+2}+p(n+1)a_{n+1}+qa_n=0 This gives a general relation between the coefficients. Special cases are n=0,1,2.

4.2 Some special cases

4.2.1 Frobenius' method

Given the LDE \frac{d^2y(x)}{dx^2}+\frac{b(x)}{x}\frac{dy(x)}{dx}+\frac{c(x)}{x^2}y(x)=0 with b(x) and c(x) analytical at x=0. This LDE has at least one solution of the form y_i(x)=x^{r_i}\sum_{n=0}^\infty a_nx^n~~~\mbox{with}~~i=1,2 with r real or complex and chosen so that a_0\neq0. When one expands b(x) and c(x) as b(x)=b_0+b_1x+b_2x^2+... and c(x)=c_0+c_1x+c_2x^2+..., it follows for r: r^2+(b_0-1)r+c_0=0 There are now 3 possibilities:
  1. r_1=r_2: than y(x)=y_1(x)\ln|x|+y_2(x).
  2. r_1-r_2\in I\hspace{-1mm}N: than y(x)=ky_1(x)\ln|x|+y_2(x).
  3. r_1-r_2\neq Z\hspace{-1ex}Z: than y(x)=y_1(x)+y_2(x).

4.2.2 Euler

Given the LDE x^2\frac{d^2y(x)}{dx^2}+ax\frac{dy(x)}{dx}+by(x)=0 Substitution of y(x)=x^r gives an equation for r: r^2+(a-1)r+b=0. From this one gets two solutions r_1 and r_2. There are now 2 possibilities:
  1. r_1\neq r_2: than y(x)=C_1x^{r1}+C_2x^{r_2}.
  2. r_1=r_2=r: than y(x)=(C_1\ln(x)+C_2)x^r.

4.2.3 Legendre's DE

Given the LDE (1-x^2)\frac{d^2y(x)}{dx^2}-2x\frac{dy(x)}{dx}+n(n-1)y(x)=0 The solutions of this equation are given by y(x)=aP_n(x)+by_2(x) where the Legendre polynomials P(x) are defined by: P_n(x)=\frac{d^n}{dx^n}\left(\frac{(1-x^2)^n}{2^n n!}\right) For these holds: \|P_n\|^2=2/(2n+1).

4.2.4 The associated Legendre equation

This equation follows from the \theta-dependent part of the wave equation \nabla^2\Psi=0 by substitution of \xi=\cos(\theta). Than follows: (1-\xi^2)\frac{d}{d\xi}\left((1-\xi^2)\frac{dP(\xi)}{d\xi}\right)+ [C(1-\xi^2)-m^2]P(\xi)=0 Regular solutions exists only if C=l(l+1). They are of the form: P_l^{|m|}(\xi)=(1-\xi^2)^{m/2}\frac{d^{|m|}P^0(\xi)}{d\xi^{|m|}}= \frac{(1-\xi^2)^{|m|/2}}{2^ll!}\frac{d^{|m|+l}}{d\xi^{|m|+l}}(\xi^2-1)^l For |m|>l is P_l^{|m|}(\xi)=0. Some properties of P_l^0(\xi) zijn: \int\limits_{-1}^1P_l^0(\xi)P_{l'}^0(\xi)d\xi=\frac{2}{2l+1}\delta_{ll'}~~~,~~~ \sum_{l=0}^\infty P_l^0(\xi)t^l=\frac{1}{\sqrt{1-2\xi t+t^2}} This polynomial can be written as: P_l^0(\xi)=\frac{1}{\pi}\int\limits_0^\pi(\xi+\sqrt{\xi^2-1}\cos(\theta))^ld\theta

4.2.5 Solutions for Bessel's equation

Given the LDE x^2\frac{d^2y(x)}{dx^2}+x\frac{dy(x)}{dx}+(x^2-\nu^2)y(x)=0 also called Bessel's equation, and the Bessel functions of the first kind J_\nu(x)=x^\nu\sum_{m=0}^\infty\frac{(-1)^mx^{2m}}{2^{2m+\nu}m!\Gamma(\nu+m+1)} for \nu:=n\in I\hspace{-1mm}N this becomes: J_n(x)=x^n\sum_{m=0}^\infty\frac{(-1)^mx^{2m}}{2^{2m+n}m!(n+m)!} When \nu\neq Z\hspace{-1ex}Z the solution is given by y(x)=aJ_\nu(x)+bJ_{-\nu}(x). But because for n\in Z\hspace{-1ex}Z holds: J_{-n}(x)=(-1)^nJ_n(x), this does not apply to integers. The general solution of Bessel's equation is given by y(x)=aJ_\nu(x)+bY_\nu(x), where Y_\nu are the Bessel functions of the second kind: Y_\nu(x)=\frac{J_\nu(x)\cos(\nu\pi)-J_{-\nu}(x)}{\sin(\nu\pi)}~~~\mbox{and}~~~ Y_n(x)=\lim_{\nu\rightarrow n}Y_\nu(x) The equation x^2y''(x)+xy'(x)-(x^2+\nu^2)y(x)=0 has the modified Bessel functions of the first kind I_\nu(x)=i^{-\nu}J_\nu(ix) as solution, and also solutions K_\nu=\pi[I_{-\nu}(x)-I_\nu(x)]/[2\sin(\nu\pi)].

Sometimes it can be convenient to write the solutions of Bessel's equation in terms of the Hankel functions H^{(1)}_n(x)=J_n(x)+iY_n(x)~~,~~H^{(2)}_n(x)=J_n(x)-iY_n(x)

4.2.6 Properties of Bessel functions

Bessel functions are orthogonal with respect to the weight function p(x)=x.

J_{-n}(x)=(-1)^nJ_n(x). The Neumann functions N_m(x) are definied as: N_m(x)=\frac{1}{2\pi}J_m(x)\ln(x)+\frac{1}{x^m}\sum_{n=0}^\infty \alpha_nx^{2n} The following holds: \lim\limits_{x\rightarrow0}J_m(x)=x^m, \lim\limits_{x\rightarrow0}N_m(x)=x^{-m} for m\neq0, \lim\limits_{x\rightarrow0}N_0(x)=\ln(x). \lim_{r\rightarrow\infty}H(r)=\frac{{\rm e}^{\pm ikr}{\rm e}^{i\omega t}}{\sqrt{r}}~~,~~ \lim_{x\rightarrow\infty}J_n(x)=\sqrt{\frac{2}{\pi x}}\cos(x-x_n)~~,~~ \lim_{x\rightarrow\infty}J_{-n}(x)=\sqrt{\frac{2}{\pi x}}\sin(x-x_n) with x_n=\frac{1}{2}\pi(n+\frac{1}{2}). J_{n+1}(x)+J_{n-1}(x)=\frac{2n}{x}J_n(x)~~,~~J_{n+1}(x)-J_{n-1}(x)=-2\frac{dJ_n(x)}{dx} The following integral relations hold: J_m(x)=\frac{1}{2\pi}\int\limits_0^{2\pi}\exp[i(x\sin(\theta)-m\theta)]d\theta= \frac{1}{\pi}\int\limits_0^\pi\cos(x\sin(\theta)-m\theta)d\theta

4.2.7 Laguerre's equation

Given the LDE x\frac{d^2y(x)}{dx^2}+(1-x)\frac{dy(x)}{dx}+ny(x)=0 Solutions of this equation are the Laguerre polynomials L_n(x): L_n(x)=\frac{{\rm e}^x}{n!}\frac{d^n}{dx^n}\left(x^n{\rm e}^{-x}\right)= \sum_{m=0}^\infty\frac{(-1)^m}{m!}{n\choose m}x^m

4.2.8 The associated Laguerre equation

Given the LDE \frac{d^2y(x)}{dx^2}+\left(\frac{m+1}{x}-1\right)\frac{dy(x)}{dx}+\left(\frac{n+\frac{1}{2}(m+1)}{x}\right)y(x)=0 Solutions of this equation are the associated Laguerre polynomials L_n^m(x): L_n^m(x)=\frac{(-1)^mn!}{(n-m)!}{\rm e}^{-x}x^{-m}\frac{d^{n-m}}{dx^{n-m}}\left({\rm e}^{-x}x^n\right)

4.2.9 Hermite

The differential equations of Hermite are: \frac{d^2 {\rm H}_n(x)}{dx^2}-2x\frac{d{\rm H}_n(x)}{dx}+2n{\rm H}_n(x)=0~~\mbox{and}~~ \frac{d^2{\rm He}_n(x)}{dx^2}-x\frac{d{\rm He}_n(x)}{dx}+n{\rm He}_n(x)=0 Solutions of these equations are the Hermite polynomials, given by: {\rm H}_n(x)=(-1)^n\exp\left(\frac{1}{2}x^2\right)\frac{d^n(\exp(-\frac{1}{2}x^2))}{dx^n}=2^{n/2}{\rm He}_n(x\sqrt{2}) {\rm He}_n(x)=(-1)^n(\exp\left(x^2\right)\frac{d^n(\exp(-x^2))}{dx^n}=2^{-n/2}{\rm He}_n(x/\sqrt{2})

4.2.10 Chebyshev

The LDE (1-x^2)\frac{d^2U_n(x)}{dx^2}-3x\frac{dU_n(x)}{dx}+n(n+2)U_n(x)=0 has solutions of the form U_n(x)=\frac{\sin[(n+1)\arccos(x)]}{\sqrt{1-x^2}} The LDE (1-x^2)\frac{d^2T_n(x)}{dx^2}-x\frac{dT_n(x)}{dx}+n^2T_n(x)=0 has solutions T_n(x)=\cos(n\arccos(x)).

4.2.11 Weber

The LDE W''_n(x)+(n+\frac{1}{2}-\frac{1}{4} x^2)W_n(x)=0 has solutions: W_n(x)={\rm He}_n(x)\exp(-\frac{1}{4} x^2).

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are: \begin{array}{lll} y'=a\sqrt{y^2+b^2}&~~~~&y=b\sinh(a(x-x_0))\\ y'=a\sqrt{y^2-b^2}&~~~~&y=b\cosh(a(x-x_0))\\ y'=a\sqrt{b^2-y^2}&~~~~&y=b\cos(a(x-x_0))\\ y'=a(y^2+b^2) &~~~~&y=b\tan(a(x-x_0))\\ y'=a(y^2-b^2) &~~~~&y=b\coth(a(x-x_0))\\ y'=a(b^2-y^2) &~~~~&y=b\tanh(a(x-x_0))\\ \displaystyle y'=ay\left(\frac{b-y}{b}\right)&~~~~&\displaystyle y=\frac{b}{1+Cb\exp(-ax)} \end{array}

4.4 Sturm-Liouville equations

Sturm-Liouville equations are second order LDE's of the form: -\frac{d}{dx}\left(p(x)\frac{dy(x)}{dx}\right)+q(x)y(x)=\lambda m(x)y(x) The boundary conditions are chosen so that the operator L=-\frac{d}{dx}\left(p(x)\frac{d}{dx}\right)+q(x) is Hermitean. The normalization function m(x) must satisfy \int\limits_a^bm(x)y_i(x)y_j(x)dx=\delta_{ij} When y_1(x) and y_2(x) are two linear independent solutions one can write the Wronskian in this form: W(y_1,y_2)=\left|\begin{array}{cc}y_1&y_2\\ y_1'&y_2' \end{array}\right|= \frac{C}{p(x)} where C is constant. By changing to another dependent variable u(x), given by: u(x)=y(x)\sqrt{p(x)}, the LDE transforms into the normal form: \frac{d^2u(x)}{dx^2}+I(x)u(x)=0~~~\mbox{with}~~~ I(x)=\frac{1}{4}\left(\frac{p'(x)}{p(x)}\right)^2-\frac{1}{2}\frac{p''(x)}{p(x)}-\frac{q(x)-\lambda m(x)}{p(x)} If I(x)>0, than y''/y<0 and the solution has an oscillatory behaviour, if I(x)<0, than y''/y>0 and the solution has an exponential behaviour.

4.5 Linear partial differential equations

4.5.1 General

The normal derivative is defined by: \frac{\partial u}{\partial n}=(\vec{\nabla}u,\vec{n}) A frequently used solution method for PDE's is separation of variables: one assumes that the solution can be written as u(x,t)=X(x)T(t). When this is substituted two ordinary DE's for X(x) and T(t) are obtained.

4.5.2 Special cases

4.5.2.1 The wave equation

The wave equation in 1 dimension is given by \frac{\partial^2u}{\partial t^2}=c^2\frac{\partial^2u}{\partial x^2} When the initial conditions u(x,0)=\varphi(x) and \partial u(x,0)/\partial t=\Psi(x) apply, the general solution is given by: u(x,t)=\frac{1}{2}\left[\varphi(x+ct)+\varphi(x-ct)\right]+\frac{1}{2c} \int\limits_{x-ct}^{x+ct}\Psi(\xi)d\xi

4.5.2.2 The diffusion equation

The diffusion equation is: \frac{\partial u}{\partial t}=D\nabla^2u Its solutions can be written in terms of the propagators P(x,x',t). These have the property that P(x,x',0)=\delta(x-x'). In 1 dimension it reads: P(x,x',t)=\frac{1}{2\sqrt{\pi Dt}}\exp\left(\frac{-(x-x')^2}{4Dt}\right) In 3 dimensions it reads: P(x,x',t)=\frac{1}{8(\pi Dt)^{3/2}}\exp\left(\frac{-(\vec{x}-\vec{x}')^2}{4Dt}\right) With initial condition u(x,0)=f(x) the solution is: u(x,t)=\int\limits_{\cal G}f(x')P(x,x',t)dx' The solution of the equation \frac{\partial u}{\partial t}-D\frac{\partial^2u}{\partial x^2}=g(x,t) is given by u(x,t)=\int dt' \int dx'g(x',t')P(x,x',t-t')

4.5.2.3 The equation of Helmholtz

The equation of Helmholtz is obtained by substitution of u(\vec{x},t)=v(\vec{x})\exp(i\omega t) in the wave equation. This gives for v: \nabla^2v(\vec{x},\omega)+k^2v(\vec{x},\omega)=0 This gives as solutions for v:
  1. In cartesian coordinates: substitution of v=A\exp(i\vec{k}\cdot\vec{x}) gives: v(\vec{x})=\int\cdots\int A(k){\rm e}^{i\vec{k}\cdot\vec{x}}dk with the integrals over \vec{k}^2=k^2. \item In polar coordinates: v(r,\varphi)=\sum_{m=0}^\infty(A_mJ_m(kr)+B_mN_m(kr)){\rm e}^{im\varphi}
  2. In spherical coordinates: v(r,\theta,\varphi)=\sum_{l=0}^\infty\sum_{m=-l}^l[A_{lm}J_{l+\frac{1}{2}}(kr)+B_{lm}J_{-l-\frac{1}{2}}(kr)]\frac{Y(\theta,\varphi)}{\sqrt{r}}

4.5.3 Potential theory and Green's theorem

Subject of the potential theory are the Poisson equation \nabla^2u=-f(\vec{x}) where f is a given function, and the Laplace equation \nabla^2u=0. The solutions of these can often be interpreted as a potential. The solutions of Laplace's equation are called harmonic functions.

When a vector field \vec{v} is given by \vec{v}={\rm grad}\varphi holds: \int\limits_a^b(\vec{v},\vec{t})ds=\varphi(\vec{b})-\varphi(\vec{a}) In this case there exist functions \varphi and \vec{w} so that \vec{v}={\rm grad}\varphi+{\rm curl}\vec{w}.

The field lines of the field \vec{v}(\vec{x}) follow from: \dot{\vec{x}}(t)=\lambda\vec{v}(\vec{x}) The first theorem of Green is: \iiint\limits_{\cal\!\!\! G}[u\nabla^2v+(\nabla u,\nabla v)]d^3V=\mathop{\int\hspace{-2ex}\int\hspace{-2.8ex}\bigcirc}\limits_{\cal\!\!\! S}u\frac{\partial v}{\partial n}d^2A The second theorem of Green is: \iiint\limits_{\cal\!\!\! G}[u\nabla^2v-v\nabla^2u]d^3V=\mathop{\int\hspace{-2ex}\int\hspace{-2.8ex}\bigcirc}\limits_{\cal\!\!\! S}\left(u\frac{\partial v}{\partial n}-v\frac{\partial u}{\partial n}\right)d^2A A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function with a normal derivative of 0 on the boundary of an area is constant within that area.

The Dirichlet problem is: \nabla^2u(\vec{x})=-f(\vec{x})~~,~~\vec{x}\in R~~,~~u(\vec{x})=g(\vec{x})~~\mbox{for all}~~\vec{x}\in S. It has a unique solution.

The Neumann problem is: \nabla^2u(\vec{x})=-f(\vec{x})~~,~~\vec{x}\in R~~,~~\frac{\partial u(\vec{x})}{\partial n}=h(\vec{x})~~\mbox{for all}~~\vec{x}\in S. The solution is unique except for a constant. The solution exists if: -\iiint\limits_{\!\!\!R}f(\vec{x})d^3V=\mathop{\int\hspace{-2ex}\int\hspace{-2.8ex}\bigcirc}_{\!\!\!S}h(\vec{x})d^2A A fundamental solution of the Laplace equation satisfies: \nabla^2u(\vec{x})=-\delta(\vec{x}) This has in 2 dimensions in polar coordinates the following solution: u(r)=\frac{\ln(r)}{2\pi} This has in 3 dimensions in spherical coordinates the following solution: u(r)=\frac{1}{4\pi r} The equation \nabla^2v=-\delta(\vec{x}-\vec{\xi}) has the solution v(\vec{x})=\frac{1}{4\pi|\vec{x}-\vec{\xi}|} After substituting this in Green's 2nd theorem and applying the sieve property of the \delta function one can derive Green's 3rd theorem: u(\vec{\xi})=-\frac{1}{4\pi}\iiint\limits_R\frac{\nabla^2u}{r}d^3V+ \frac{1}{4\pi}\mathop{\int\hspace{-2ex}\int\hspace{-2.8ex}\bigcirc}\limits_S\left[\frac{1}{r}\frac{\partial u}{\partial n}-u\frac{\partial}{\partial n}\left(\frac{1}{r}\right)\right]d^2A The Green function G(\vec{x},\vec{\xi}) is defined by: \nabla^2G=-\delta(\vec{x}-\vec{\xi}), and on boundary S holds G(\vec{x},\vec{\xi})=0. Than G can be written as: G(\vec{x},\vec{\xi})=\frac{1}{4\pi|\vec{x}-\vec{\xi}|}+g(\vec{x},\vec{\xi}) Than g(\vec{x},\vec{\xi}) is a solution of Dirichlet's problem. The solution of Poisson's equation \nabla^2u=-f(\vec{x}) when on the boundary S holds: u(\vec{x})=g(\vec{x}), is: u(\vec{\xi})=\iiint\limits_RG(\vec{x},\vec{\xi})f(\vec{x})d^3V- \mathop{\int\hspace{-2ex}\int\hspace{-2.8ex}\bigcirc}\limits_Sg(\vec{x})\frac{\partial G(\vec{x},\vec{\xi})}{\partial n}d^2A