Processing math: 4%

1. Basics

1.1 Goniometric functions

For the goniometric ratios for a point p on the unit circle holds: cos(ϕ)=xp  ,  sin(ϕ)=yp  ,  tan(ϕ)=ypxp sin2(x)+cos2(x)=1 and cos2(x)=1+tan2(x). cos(a±b)=cos(a)cos(b)sin(a)sin(b)  ,  sin(a±b)=sin(a)cos(b)±cos(a)sin(b) tan(a±b)=tan(a)±tan(b)1tan(a)tan(b) The sum formulas are: sin(p)+sin(q)=2sin(12(p+q))cos(12(pq))sin(p)sin(q)=2cos(12(p+q))sin(12(pq))cos(p)+cos(q)=2cos(12(p+q))cos(12(pq))cos(p)cos(q)=2sin(12(p+q))sin(12(pq)) From these equations can be derived that 2cos2(x)=1+cos(2x)  ,  2sin2(x)=1cos(2x)sin(πx)=sin(x)  ,  cos(πx)=cos(x)sin(12πx)=cos(x)  ,  cos(12πx)=sin(x) Conclusions from equalities: sin(x)=sin(a)_    x=a±2kπ or x=(πa)±2kπ,  kINcos(x)=cos(a)_    x=a±2kπ or x=a±2kπtan(x)=tan(a)_    x=a±kπ and xπ2±kπ The following relations exist between the inverse goniometric functions: arctan(x)=arcsin(xx2+1)=arccos(1x2+1)  ,  sin(arccos(x))=1x2

1.2 Hyperbolic functions

The hyperbolic functions are defined by: sinh(x)=exex2  ,   cosh(x)=ex+ex2  ,   tanh(x)=sinh(x)cosh(x) From this follows that cosh2(x)sinh2(x)=1. Further holds: arsinh(x)=ln|x+x2+1|   ,   arcosh(x)=arsinh(x21)

1.3 Calculus

The derivative of a function is defined as: dfdx=lim Derivatives obey the following algebraic rules: d(x\pm y)=dx\pm dy~~,~~d(xy)=xdy+ydx~~,~~d\left(\frac{x}{y}\right)=\frac{ydx-xdy}{y^2} For the derivative of the inverse function f^{\rm inv}(y), defined by f^{\rm inv}(f(x))=x, holds at point P=(x,f(x)): \left(\frac{df^{\rm inv}(y)}{dy}\right)_P\cdot\left(\frac{df(x)}{dx}\right)_P=1 Chain rule: if f=f(g(x)), then holds \frac{df}{dx}=\frac{df}{dg}\frac{dg}{dx} Further, for the derivatives of products of functions holds: (f\cdot g)^{(n)}=\sum\limits_{k=0}^n{n\choose k}f^{(n-k)}\cdot g^{(k)} For the primitive function F(x) holds: F'(x)=f(x). An overview of derivatives and primitives is:

y=f(x)dy/dx=f'(x)\int f(x)dx
ax^n anx^{n-1}a(n+1)^{-1}x^{n+1}
1/x -x^{-2}\ln|x|
a 0ax
a^x a^x\ln(a)a^x/\ln(a)
{\rm e}^x {\rm e}^x{\rm e}^x
^a\log(x) (x\ln(a))^{-1}(x\ln(x)-x)/\ln(a)
\ln(x) 1/xx\ln(x)-x
\sin(x) \cos(x)-\cos(x)
\cos(x) -\sin(x)\sin(x)
\tan(x) \cos^{-2}(x)-\ln|\cos(x)|
\sin^{-1}(x) -\sin^{-2}(x)\cos(x)\ln|\tan(\frac{1}{2} x)|
\sinh(x) \cosh(x)\cosh(x)
\cosh(x) \sinh(x)\sinh(x)
\arcsin(x) 1/\sqrt{1-x^2}x\arcsin(x)+\sqrt{1-x^2}
\arccos(x) -1/\sqrt{1-x^2}x\arccos(x)-\sqrt{1-x^2}
\arctan(x) (1+x^2)^{-1}x\arctan(x)-\frac{1}{2}\ln(1+x^2)
(a+x^2)^{-1/2} -x(a+x^2)^{-3/2}\ln|x+\sqrt{a+x^2}|
(a^2-x^2)^{-1} 2x(a^2+x^2)^{-2}\displaystyle\frac{1}{2a}\ln|(a+x)/(a-x)|

The curvature \rho of a curve is given by: \displaystyle\rho=\frac{(1+(y')^2)^{3/2}}{|y''|}

The theorem of De 'l H\^opital: if f(a)=0 and g(a)=0, then is \displaystyle\lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)}

1.4 Limits

\lim_{x\rightarrow0}\frac{\sin(x)}{x}=1~~,~~ \lim_{x\rightarrow0}\frac{{\rm e}^x-1}{x}=1~~,~~ \lim_{x\rightarrow0}\frac{\tan(x)}{x}=1~~,~~ \lim_{k\rightarrow0}(1+k)^{1/k}={\rm e}~~,~~ \lim_{x\rightarrow\infty}\left(1+\frac{n}{x}\right)^x={\rm e}^n \lim_{x\downarrow0}x^a\ln(x)=0~~,~~ \lim_{x\rightarrow\infty}\frac{\ln^p(x)}{x^a}=0~~,~~ \lim_{x\rightarrow0}\frac{\ln(x+a)}{x}=a~~,~~ \lim_{x\rightarrow\infty}\frac{x^p}{a^x}=0~~\mbox{als }|a|>1. \lim_{x\rightarrow0}\left(a^{1/x}-1\right)=\ln(a)~~,~~ \lim_{x\rightarrow0}\frac{\arcsin(x)}{x}=1~~,~~ \lim_{x\rightarrow\infty}\sqrt[x]{x}=1

1.5 Complex numbers and quaternions

1.5.1 Complex numbers

The complex number z=a+bi with a and b\in I\hspace{-1mm}R. a is the real part, b the imaginary part of z. |z|=\sqrt{a^2+b^2}. By definition holds: i^2=-1. Every complex number can be written as z=|z|\exp(i\varphi), with \tan(\varphi)=b/a. The complex conjugate of z is defined as \overline{z}=z^*:=a-bi. Further holds: \begin{eqnarray*} (a+bi)(c+di)&=&(ac-bd)+i(ad+bc)\\ (a+bi)+(c+di)&=&a+c+i(b+d)\\ \frac{a+bi}{c+di}&=&\frac{(ac+bd)+i(bc-ad)}{c^2+d^2} \end{eqnarray*} Goniometric functions can be written as complex exponents: \begin{eqnarray*} \sin(x)&=&\frac{1}{2i}({\rm e}^{ix}-{\rm e}^{-ix})\\ \cos(x)&=&\frac{1}{2}({\rm e}^{ix}+{\rm e}^{-ix}) \end{eqnarray*} From this follows that \cos(ix)=\cosh(x) and \sin(ix)=i\sinh(x). Further follows from this that\newline {\rm e}^{\pm ix}=\cos(x)\pm i\sin(x), so {\rm e}^{iz}\neq0\forall z. Also the theorem of De Moivre follows from this:\\ (\cos(\varphi)+i\sin(\varphi))^n=\cos(n\varphi)+i\sin(n\varphi).

Products and quotients of complex numbers can be written as: \begin{eqnarray*} z_1\cdot z_2&=&|z_1|\cdot|z_2|(\cos(\varphi_1+\varphi_2)+i\sin(\varphi_1+\varphi_2))\\ \frac{z_1}{z_2}&=&\frac{|z_1|}{|z_2|}(\cos(\varphi_1-\varphi_2)+i\sin(\varphi_1-\varphi_2)) \end{eqnarray*} The following can be derived: |z_1+z_2|\leq|z_1|+|z_2|~~,~~|z_1-z_2|\geq|~|z_1|-|z_2|~| And from z=r\exp(i\theta) follows: \ln(z)=\ln(r)+i\theta, \ln(z)=\ln(z)\pm2n\pi i.

1.5.2 Quaternions

Quaternions are defined as: z=a+bi+cj+dk, with a,b,c,d\in I\hspace{-1mm}R and i^2=j^2=k^2=-1. The products of i,j,k with each other are given by ij=-ji=k, jk=-kj=i and ki=-ik=j.

1.6 Geometry

1.6.1 Triangles

The sine rule is: \frac{a}{\sin(\alpha)}=\frac{b}{\sin(\beta)}=\frac{c}{\sin(\gamma)} Here, \alpha is the angle opposite to a, \beta is opposite to b and \gamma opposite to c. The cosine rule is: a^2=b^2+c^2-2bc\cos(\alpha). For each triangle holds: \alpha+\beta+\gamma=180^\circ.

Further holds: \frac{\tan(\frac{1}{2}(\alpha+\beta))}{\tan(\frac{1}{2}(\alpha-\beta))}=\frac{a+b}{a-b} The surface of a triangle is given by \frac{1}{2} ab\sin(\gamma)=\frac{1}{2} ah_a=\sqrt{s(s-a)(s-b)(s-c)} with h_a the perpendicular on a and s=\frac{1}{2}(a+b+c).

1.6.2 Curves

Cycloid: if a circle with radius a rolls along a straight line, the trajectory of a point on this circle has the following parameter equation: x=a(t+\sin(t))~~,~~y=a(1+\cos(t)) Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point on the small circle has the following parameter equation: x=a\sin\left(\frac{R+a}{a}t\right)+(R+a)\sin(t)~~,~~ y=a\cos\left(\frac{R+a}{a}t\right)+(R+a)\cos(t) Hypocycloid: if a small circle with radius a rolls inside a big circle with radius R, the trajectory of a point on the small circle has the following parameter equation: x=a\sin\left(\frac{R-a}{a}t\right)+(R-a)\sin(t)~~,~~ y=-a\cos\left(\frac{R-a}{a}t\right)+(R-a)\cos(t) A hypocycloid with a=R is called a cardioid. It has the following parameterequation in polar coordinates: r=2a[1-\cos(\varphi)].

1.7 Vectors

The inner product is defined by: \displaystyle\vec{a}\cdot\vec{b}=\sum_i a_ib_i=|\vec{a}|\cdot|\vec{b}|\cos(\varphi)

where \varphi is the angle between \vec{a} and \vec{b}. The external product is in I\hspace{-1mm}R^3 defined by: \vec{a}\times\vec{b}=\left(\begin{array}{c} a_yb_z-a_zb_y\\ a_zb_x-a_xb_z\\ a_xb_y-a_yb_x\end{array}\right)= \left|\begin{array}{ccc} \vec{e}_x&\vec{e}_y&\vec{e}_z\\ a_x&a_y&a_z\\ b_x&b_y&b_z\end{array}\right| Further holds: |\vec{a}\times\vec{b}|=|\vec{a}|\cdot|\vec{b}|\sin(\varphi), and \vec{a}\times(\vec{b}\times\vec{c})=(\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c}.

1.8 Series

1.8.1 Expansion

The Binomium of Newton is: (a+b)^n=\sum_{k=0}^n{n\choose k}a^{n-k}b^k where \displaystyle{n\choose k}:=\frac{n!}{k!(n-k)!}.

By subtracting the series \sum\limits_{k=0}^n r^k and r\sum\limits_{k=0}^n r^k one finds: \sum_{k=0}^n r^k=\frac{1-r^{n+1}}{1-r} and for |r|<1 this gives the geometric series: \displaystyle\sum_{k=0}^\infty r^k=\frac{1}{1-r}.

The arithmetic series is given by: \displaystyle\sum_{n=0}^N(a+nV)=a(N+1)+\frac{1}{2} N(N+1)V.

The expansion of a function around the point a is given by the Taylor series: f(x)=f(a)+(x-a)f'(a)+\frac{(x-a)^2}{2}f''(a)+\cdots+\frac{(x-a)^n}{n!}f^{(n)}(a)+R where the remainder is given by: R_n(h)=(1-\theta)^n\frac{h^n}{n!}f^{(n+1)}(\theta h) and is subject to: \frac{mh^{n+1}}{(n+1)!}\leq R_n(h)\leq\frac{Mh^{n+1}}{(n+1)!} From this one can deduce that (1-x)^\alpha=\sum_{n=0}^\infty{\alpha\choose n}x^n One can derive that: \sum_{n=1}^\infty\frac{1}{n^2}=\frac{\pi^2}{6}~,~~ \sum_{n=1}^\infty\frac{1}{n^4}=\frac{\pi^4}{90}~,~~ \sum_{n=1}^\infty\frac{1}{n^6}=\frac{\pi^6}{945} \sum_{k=1}^nk^2=\mbox{$\frac{1}{6}$}n(n+1)(2n+1)~,~~ \sum_{n=1}^\infty\frac{(-1)^{n+1}}{n^2}=\frac{\pi^2}{12}~,~~ \sum_{n=1}^\infty\frac{(-1)^{n+1}}{n}=\ln(2) \sum_{n=1}^\infty\frac{1}{4n^2-1}=\mbox{$\frac{1}{2}$}~,~~ \sum_{n=1}^\infty\frac{1}{(2n-1)^2}=\frac{\pi^2}{8}~,~~ \sum_{n=1}^\infty\frac{1}{(2n-1)^4}=\frac{\pi^4}{96}~,~~ \sum_{n=1}^\infty\frac{(-1)^{n+1}}{(2n-1)^3}=\frac{\pi^3}{32}

1.8.2 Convergence and divergence of series

If \sum\limits_n|u_n| converges, \sum\limits_n u_n also converges.

If \lim\limits_{n\rightarrow\infty}u_n\neq0 then \sum\limits_n u_n is divergent.

An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent (Leibniz).

If \int_p^{\infty}f(x)dx<\infty, then \sum\limits_n f_n is convergent.

If u_n>0~\forall n then is \sum\limits_n u_n convergent if \sum\limits_n\ln(u_n+1) is convergent.

If u_n=c_nx^n the radius of convergence \rho of \sum\limits_n u_n is given by: \displaystyle\frac{1}{\rho}=\lim_{n\rightarrow\infty}\sqrt[n]{|c_n|}= \lim_{n\rightarrow\infty}\left|\frac{c_{n+1}}{c_n}\right|.

The series \displaystyle\sum_{n=1}^\infty \frac{1}{n^p} is convergent if p>1 and divergent if p\leq1.

If: \displaystyle\lim_{n\rightarrow\infty}\frac{u_n}{v_n}=p, than the following is true: if p>0 than \sum\limits_{n}u_n and \sum\limits_{n}v_n are both divergent or both convergent, if p=0 holds: if \sum\limits_{n}v_n is convergent, than \sum\limits_{n}u_n is also convergent.

If L is defined by: \displaystyle L=\lim_{n\rightarrow\infty}\sqrt[n]{|n_n|}, or by: \displaystyle L=\lim_{n\rightarrow\infty}\left|\frac{u_{n+1}}{u_n}\right|, then is \sum\limits_{n}u_n divergent if L>1 and convergent if L<1.

1.8.3 Convergence and divergence of functions

\label{sec:convf} f(x) is continuous in x=a only if the upper - and lower limit are equal: \lim\limits_{x\uparrow a}f(x)=\lim\limits_{x\downarrow a}f(x). This is written as: f(a^-)=f(a^+).

If f(x) is continuous in a and: \lim\limits_{x\uparrow a}f'(x)=\lim\limits_{x\downarrow a}f'(x), then f(x) is differentiable in x=a.

We define: \|f\|_W:={\rm sup}(|f(x)|~|x\in W), and \lim\limits_{x\rightarrow\infty}f_n(x)=f(x). Than holds: \{f_n\} is uniform convergent if \lim\limits_{n\rightarrow\infty}\|f_n-f\|=0, or: \forall(\varepsilon>0)\exists(N)\forall(n\geq N)\|f_n-f\|<\varepsilon.

Weierstrass' test: if \sum\|u_n\|_W is convergent, than \sum u_n is uniform convergent.

We define \displaystyle S(x)=\sum_{n=N}^\infty u_n(x) and \displaystyle F(y)=\int\limits_a^bf(x,y)dx:=F. Than it can be proved that:

TheoremForDemands on WThen holds on W
rowsf_n continuous, \{f_n\} uniform convergentf is continuous
C seriesS(x) uniform convergent, u_n continuousS is continuous
integralf is continuousF is continuous
rowsf_n can be integrated, \{f_n\} uniform convergentf_n can be integrated, \int f(x)dx=\lim\limits_{n\rightarrow\infty}\int f_ndx
I seriesS(x) is uniform convergent, u_n can be integratedS can be integrated, \int Sdx=\sum\int u_ndx
integralf is continuous\int Fdy=\iint f(x,y)dxdy
rows\{f_n\}\inC^{-1}; \{f_n'\} unif.conv \rightarrow\phif'=\phi(x)
D seriesu_n\inC^{-1}; \sum u_n conv; \sum u_n' u.c.S'(x)=\sum u_n'(x)
integral\partial f/\partial y continuousF_y=\int f_y(x,y)dx

1.9 Products and quotients

For a,b,c,d\in I\hspace{-1mm}R holds:\\ The distributive property: (a+b)(c+d)=ac+ad+bc+bd\\ The associative property: a(bc)=b(ac)=c(ab) and a(b+c)=ab+ac\\ The commutative property: a+b=b+a, ab=ba.

Further holds: \frac{a^{2n}-b^{2n}}{a\pm b}=a^{2n-1}\pm a^{2n-2}b+a^{2n-3}b^2\pm\cdots\pm b^{2n-1}~~~,~~~ \frac{a^{2n+1}-b^{2n+1}}{a+b}=\sum_{k=0}^n a^{2n-k}b^{2k} (a\pm b)(a^2\pm ab+b^2)=a^3\pm b^3~,~~(a+b)(a-b)=a^2+b^2~,~~ \frac{a^3\pm b^3}{a+b}=a^2\mp ba+b^2

1.10 Logarithms

Definition: ^a\log(x)=b\Leftrightarrow a^b=x. For logarithms with base e one writes \ln(x).

Rules: \log(x^n)=n\log(x), \log(a)+\log(b)=\log(ab), \log(a)-\log(b)=\log(a/b).

1.11 Polynomials

Equations of the type \sum_{k=0}^n a_kx^k=0 have n roots which may be equal to each other. Each polynomial p(z) of order n\geq1 has at least one root in \mathbb{C}. If all a_k\in I\hspace{-1mm}R holds: when x=p with p\in\mathbb{C} a root, than p^* is also a root. Polynomials up to and including order 4 have a general analytical solution, for polynomials with order \geq5 there does not exist a general analytical solution.

For a,b,c\in I\hspace{-1mm}R and a\neq0 holds: the 2nd order equation ax^2+bx+c=0 has the general solution: x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} For a,b,c,d\in I\hspace{-1mm}R and a\neq0 holds: the 3rd order equation ax^3+bx^2+cx+d=0 has the general analytical solution: \begin{eqnarray*} x_1&=&~K-\frac{3ac-b^2}{9a^2K}-\frac{b}{3a}\\ x_2=x_3^*&=&-\frac{K}{2}+\frac{3ac-b^2}{18a^2K}-\frac{b}{3a}+i\frac{\sqrt{3}}{2}\left(K+\frac{3ac-b^2}{9a^2K}\right)\\ \end{eqnarray*} with \displaystyle K=\left(\frac{9abc-27da^2-2b^3}{54a^3}+ \frac{\sqrt{3}\,\sqrt{4ac^3-c^2b^2-18abcd+27a^2d^2+4db^3}}{18a^2}\right)^{1/3}

1.12 Primes

A prime is a number \in I\hspace{-1mm}N that can only be divided by itself and 1. There are an infinite number of primes. Proof: suppose that the collection of primes P would be finite, than construct the number q=1+\prod\limits_{p\in P}p, than holds q=1(p) and so Q cannot be written as a product of primes from P. This is a contradiction.

If \pi(x) is the number of primes \leq x, than holds: \lim_{x\rightarrow\infty}\frac{\pi(x)}{x/\ln(x)}=1~~~\mbox{and}~~~ \lim_{x\rightarrow\infty}\frac{\pi(x)}{\int\limits_2^x\frac{dt}{\ln(t)}}=1 For each N\geq2 there is a prime between N and 2N.

The numbers F_k:=2^k+1 with k\in I\hspace{-1mm}N are called Fermat numbers. Many Fermat numbers are prime.

The numbers M_k:=2^k-1 are called Mersenne numbers. They occur when one searches for perfect numbers, which are numbers n\in I\hspace{-1mm}N which are the sum of their different dividers, for example 6=1+2+3. There are 23 Mersenne numbers for k<12000 which are prime: for k\in\{2,3,5,7,13,17,19,31,61,89,107,127,521, 607,1279,2203,2281,3217,4253,4423,9689,9941,11213\}.

To check if a given number n is prime one can use a sieve method. The first known sieve method was developed by Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don't prove that a number is prime but give a large probability.

  1. Take the first 4 primes: b=\{2,3,5,7\},
  2. Take w(b)=b^{n-1}~{\rm mod}~n, for each b,
  3. If w=1 for each b, then n is probably prime. For each other value of w, n is certainly not prime.