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List of symbols

Symbol Meaning

Te ,Ti ,Ta ,Th : Temperature of electrons,ions,neutrals & heavy particles.
�v : Characteristic temperature of vibration.
�r : Characteristic temperature of rotation.
T̂ : Temperature in eV. 1 eV � 7729 K.
ne ,ni ,na ,nh : Density of electrons,ions,neutrals & heavy particles.
np; nq : Density of particles in state p and q .
n1 : Density of particles in the ground state.
� : Relative density; � = n=g .
�̂ : Elementary level density.
gp : Statistical weight of state p .
Z : Sum of states or partition function.
�B : De Broglie wavelength.
k : Boltzmanns constant = 1; 38066 � 10�23JK�1 .
�mn : Relaxation time for momentum transfer between particles m and n.
� " : Relaxation time for energy transfer.
bp : Deviation from Saha-equilibrium; bp = np=n

S
p

.
�bp : Reduced overpopulation from Saha equilibrium; �b p = bp � 1.
~q : Heat flow.
~J : Current density.
Xp : Particle from species X in level p .
I(y) : Absolute line intensity.
"(r) : Local emission coefficient.
� : Biberman factor.
SA : Signal from particles of species A.
�� : Width of the apparatus profile.
� : Cross section.
` : Mean free path between two collisions
K : Rate coefficient; K = h�vi .
~w : Drift velocity.

t : Transport frequency, 
tn1 = r � (n1 ~w1) .
p : Pressure.
L : Plasma gradient length; L = jne=rne j .
�D : Debeye length, �D =

p
"0kT=ne e2 .

� : Escape factor for radiation; 0 � � � 1.
E : Energy.
" : E=kT .
Epq : Energy difference between level p and q .
Epi : Energy difference between level p and the ion-groundlevel.
Ry : Rydberg energy = 13.595 eV.
~E : Electrical field.
A , A : Surface.
x : Horizontal coordinate, relaxation factor.
y : Vertical coordinate.
z : Axial coordinate.

H : Cp=Cv from hydrogen atoms (
H = 5

3 ).

H2 : Cp=Cv from hydrogen molecules (
H2 =

7
5 ).
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Chapter 1

Introduction

This graduation report deals with the study of the elementary processes in a hydrogen plasma. The work
is divided in two parts. First, a numerical model has been implemented to deal with the kinetic and flow
properties of the plasma. Second, a measurement system for position dependent emission spectroscopy was
built and some measurements with it are done. It has to be noted that the numerical model was implemented
for a pure hydrogen gas while the experiments were performed in a hydrogen-argon mixture.

Knowledge of the elementary reactions in such a plasma is useful for many other experiments and ap-
plications. Numerical simulations and measurements of excited atomic state densities and molecular ion
densities in a hydrogen plasma were performed. In particular we consider a recombining plasmajet which
results from the expansion of a thermal high density plasma in a vacuum vessel. The hydrogen plasma is
generated in a cascaded arc. Characteristics of such a plasma are: high initial density emanating from the
source, low electron temperature and high heavy particle and vibrational temperature. A numerical model
is implemented to calculate the densities of several constituents of the plasma. The purpose of the model
is to get insight in the main kinetics and processes in the plasma to support optimization of the plasma for
different applications. Furthermore, basic knowledge obtained from this model can be transposed to other
plasmas.

This source of hydrogen molecules, atoms and ions can be applied for several purposes:

� To create large numbers of H� ions. These ions can be accelerated in an particle accelerator, the
surplus electron can be stripped off in an gas cell, and the resulting neutral H beam can be injected
into a fusion plasma for additional heating.

� The source can be used to produce H atoms. They can be used to clean archeological objects, which
are often covered with a thick layer of dirt and/or are often corroded. The hydrogen treatment makes
it easy to remove the dirt layer and reduces corroded metals such as iron.

� A hydrogen atom (H 0 ) source can be very useful for passivation of thin amorphous semiconducting
layers. So called dangling bonds can be bound, which improves the lifetime of the material.

� In the research of plasma deposition of materials such as amorphous silicon, which can be used for
the production of solar cells, and diamond, which can be used as a strong, friction-resistant coating,
knowledge of the basic plasma properties is needed. In these applications, hydrogen kinetics play an
important role.

� As a model for gas cells. These cells create H+ ions, which can be used in particle accelerators.
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Chapter 2

Some basic concepts of plasma physics

Some basic properties of plasma physics, like ionization degree, rate coefficients and reaction balances are
explained.

2.1 An ionized gas

A plasma is a gas in which so many atoms and/or molecules have lost and/or gained one or more electrons
that the electrical interaction between these charged particles is the dominating interaction in the gas.

An important quantity of a plasma is the ionization degree � , defined by:

� =
ni

na + ni
(2:1)

where ni is the ion density and na the neutral density. This normalization leads to � = 1 in an completely
ionized plasma, instead of the ionization ratio n i=na which goes to infinity if na goes to 0. The atomic
density follows from:

na =
�

1� �
ni : (2:2)

If the plasma consists of molecules which can dissociate, for example hydrogen, the dissociation degree �
is defined in a similar way:

� =
na

na + nmol
: (2:3)

where nmol is the molecular density. Sometimes, the dissociation degree is defined with respect to mass
instead of particles. For hydrogen, this results in:

�0 =
nH

nH + 2nH2

: (2:4)

where the factor of 2 appears because the hydrogen molecule consists of 2 atoms. This definition is not
used here.

2.2 Collisions, cross sections and densities

If a test particle moves in a plasma over a distance dx , the chance that it will collide is given by [1]:

P = n�dx (2:5)

This equation defines the cross section � . It is easily to compute in a hard-sphere approximation, but in
case of electrically charged particles, and atomic or molecular systems, that is much more complicated.

The mean free path ` is defined as the average length over which a particle travels between two successive
collisions. If it is calculated, assuming that a particle moves between other particles with a fixed position,
one finds that:

` =
1
n�

: (2:6)

This also gives the average time between two collisions for a particle moving with speed v :

�c =
1

n�v
(2:7)
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6 Chapter 2: Some basic concepts of plasma physics

and the collision frequency �c = 1=�c .

The number of collisions between particles of kind 1 and kind 2 per unit of time and per unit of volume is
therefore given by:

Number of collisions = n1n2h�vi [m�3s�1] ; (2:8)

where h�vi =
R
�(E)v(E)f(E)dE is called the rate coefficient K . In the general case, the mean free

path is given by:

` =
v1

nh�ui
: (2:9)

where u =
p
v2

1 + v2
2 is the relative speed between the particles. If the collisions are between particles of

kind 1 and 2, m1 � m2 , we have [5]:
u

v1
=

r
1 +

m1

m2
: (2:10)

so for collisionsbetween electrons and heavy particles, equation 2.6 holds for electrons because me � mh .
For collisions between heavy particles we get:

` =
1

n�
p

2
: (2:11)

Usually, equations 2.5–2.7 are accurate within a factor 2 if one takes the average speed hvi for v .

2.3 Detailed balancing and microscopic reversibility

The term “detailed balancing”, which originates from statistical mechanics, means that in case of thermody-
namic equilibrium the number of reactions going forward equals the number of reactions going backwards.
This is caused by the fact that, for a microscopic collisional or radiative process, the forward and backward
process have equal probability if we correct for the occupied phase space. From this principle, we can
derive that for the reaction: X

forward

Xforward �
X
back

Xback (2:12)

where X are different species, holds: Y
forward

�̂forward =
Y
back

�̂back (2:13)

If the velocity distribution is Maxwellian, we have:

�̂Xp =
nXp

gXp

h3

(2�mXkT )3=2
e�Ekin;p=kT (2:14)

where Ekin;p is the kinetic energy of the particles in state p , and g is the statistical weight of the particles.
For an atomic state, g is the degeneracy from the state: g = 2j + 1. For electrons, ge = 2 because the
electron has 2 internal degrees of freedom, the two spin states. The quantity h3=(2�mkT )3=2 := Ve � �3

B
is called the elementary volume. This volume can contain at most one particle. g=Ve is the number of
possible quantum states for the particle.

The balances in the next sections will be derived with the help of equations 2.12 and 2.13, so they assume
(L)TE.

2.4 The Boltzmann balance

This balance describes the ration between two excited states in the same ionization state, usually the neutral
atom. The ground level is often taken to be as the reference. The reaction is:

Xp + Y � X1 + Y + (E1p) (2:15)



2.5 The Saha balance 7

where Y is a intermedium, necessary to obey conservation of momentum. Because the kinetic energies
of the electrons cancel out, the difference in kinetic energy equals the difference in internal energy of the
atoms, and the equilibrium relation becomes:

�B
p
= �1 exp

�
�E1 + Ep

kT

�
(2:16)

The balance is often obtained by electron collisions:

Xp + e� � X1 + e� + (E1p) (2:17)

In this example, if the temperatures of the different particles (e,i,a) are not equal (formally this contradicts
the LTE assumption), the electron temperature Te should be taken for T .

2.5 The Saha balance

This balance describes the ratio between the ground level ion state, the electron density and an excited
neutral level. The balance is often maintained by electron collisions:

Xp + e� + (Epi) � X+1 + 2e� (2:18)

So that the equilibrium density is given by:

�S
p = �+1 �e

�
h2

2�mekT

�3=2

exp

�
Epi

kT

�
(2:19)

Because the right hand side of equation 2.18 contains 3 particles and the left hand side 2, a factor g=V e

remains in the equilibrium equation. This factor causes the so called Saha jump [1], when p!1 , which
implies that Epi ! 0.

2.6 Resonant charge transfer

The balance for charge transfer (CT) between an ion state of an element and the ground level of another
element is given by:

X1 + Y+
r
� X+

q
+ Y1 + (Erq) (2:20)

Here Y+r and X+
q are resonant states for charge transfer.

If we assume that the process is perfectly resonant, the exponential factors disappear. In the general case,
the equilibrium condition is given by:

�CT(Y+
r
) =

�(Y1)

�(X1)
�CT(X+

q
) exp

�
Erq

kT

�
(2:21)

We note here that that the cross sections for charge transfer can be large, in particular if the energy difference
is relatively small. An order of magnitude is � � 300Å 2 .

2.7 Excitation transfer

The balance for excitation transfer (ET), between an excited level of one element and the ground level of
the other is given by:

Xr + Y1 � X1 + Yq + (Erp) (2:22)

The equilibrium condition is given by:

�ET(Xr) =
�(X1)

�(Y1)
�ET(Yq) exp

�
Erq

kT

�
(2:23)

All the previous balances interact with each other. In (L)TE all four equations 2.16, 2.19, 2.21 and 2.23
apply. In case of deviations from (L)TE, deviations from one balance will cause deviations from the others.
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2.8 TE and LTE

For a plasma in TE, Plancks law:

��d� =
8�h�3

c3(exp(h�=kT )� 1)
d� ; (2:24)

Boltzmann:
np

nq
=

gp

gq
exp

�
�Ep + Eq

kT

�
; (2:25)

and Saha:
(ni=gi)(ne=ge)

np=gp
=

�
2�mekT

h2

�3=2

exp

�
�Epi

kT

�
: (2:26)

hold for all levels p . Furthermore, the particles have a Maxwellian velocity distribution, which is for 3
(translational) degrees of freedom given by:

N (E; T )dE =
2�n

p
E

(�kT )3=2
exp

�
�E
kT

�
dE (2:27)

Of course, in TE, the temperature in these four equations is the same.

Almost no laboratory plasma is in TE, usually the deviations are large, especially from Planck’s law. This is
because the plasma state requires a large electron temperature and a large power density. Because laboratory
plasmas usually have small dimensions, these plasmas have very large density- and temperature gradients
and energy supply and losses. These are circumstances which are per definition alien to TE.

A plasma in TE, which consists of one kind of atoms with known energy levels, can be described by 2
independent parameters, e.g. pressure and temperature.

LTE is a special deviation from TE. If a plasma is in LTE, we assume that each volume-element can be
described with TE, but the used parameters are a function of position: ne = ne (~x) ; Te = Te (~x) , etc..
LTE occurs if the collisions between electrons are not influenced by the escape of radiation and if the
gradients are relatively small.

For a plasma in LTE, the Boltzmann and Saha laws hold. So does the Maxwellian energy distribution.
Planck’s equation however, does not apply.

2.9 Deviations from (L)TE; pLTE

An often occurring deviation from LTE is pLTE, partial LTE. A plasma in pLTE has a Saha equilibrium
between the excited levels and the ion-ground level, but the neutral ground level is not in Saha equilibrium
with these levels. The deviation from Saha equilibrium is given by b 1 = n1=n

S
1 . This parameter gives

the amount of over- or under population from the neutral groundlevel with respect to (L)TE. This model
is shown in figure 2.1. The Boltzmann- and Saha lines in figure 2.1 are the densities which agree with the
Boltzmann density according to equation 2.16 and the Saha density according to equation 2.19. So, per
definition, the Boltzmann line is coupled with the density of the neutral ground level, and the Saha line is
coupled with the density of the ion ground level.

The situation for a recombining plasma is sketched in figure 2.1. Such a plasma is characterized by an
underpopulation from the neutral ground level with respect to Saha density. The Saha line is positioned
above the Boltzmann line. An ionizing plasma is characterized by an overpopulation with respect to Saha
density. In this case, the Saha line lies below the Boltzmann line.

When the deviations from LTE become larger, we can define a whole set of over and under polulations bp
with respect to Saha density:

bp :=
np

nS
p

(2:28)



2.9 Deviations from (L)TE; pLTE 9

� �
1

�
�

�

�
�n1

g1
� �e

6

?
b1

Boltzmann

Saha

0 E1i

�

Figure 2.1: Schematical representation of a pLTE-density distribution. A case with b 1 < 1 , a recombining
plasma, is shown. �e(= �i) and �

1
are related to each other by the Saha equation. The slope of the lines

= 1=kT .

It turns out that usually, the higher levels are in Saha equilibrium because the higher the level, the more
collision processes become more important compared to radiation processes. So, for each plasma, there
exists a level from which on the level densities are in Saha equilibrium. Therefore, pLTE is often called
pLSE (partial Local Saha Equilibrium [16]).

It can be shown that for collisionally hot levels (this are high lying levels which are dominated by collision
processes and radiation processes can be neglected), the deviations from Saha equilibrium are given by:

�bp := bp � 1 = b0p
�x

eff (2:29)

where peff is the effective main quantum number, peff =
p
Ry=Eip . The p�xeff -law holds only for certain

classes of plasmas, those who are dominated by the (de)excitation-saturation balance [12]. Here, x is
determined by the competition between ionization and recombination and lies between 5 and 6. For
systems in ESP (Excitation Saturation Phase), where the influence of other processes than collisional
(de)excitation between levels p and p� 1 is neglected, a value x = 6 is obtained. When a plasma is far
from equilibrium, equation 2.29 is used to calculate the behaviour of the higher excited levels because they
will eventually reach the ESP region, while for the lower excited levels a collisional-radiative model must
be used.



Chapter 3

A collisional radiative model of a
hydrogen plasma

The construction of numerical collisional-radiative models in general and for this particular hydrogen
plasma is explained

3.1 Introduction to collision-radiative models

Collision-radiative models are just special balance equations for the excited levels of an excitation system.

When one wants to calculate the density of excited levels in a plasma, one can start with the continuity
equation for level p :

@np
@t

+r � (np ~w) =
�
@np
@t

�
CR

= G� L ; (3:1)

where ~w is the drift velocity and CR notes that this term contains the collisional and radiative production
and destruction rates. G stands for gain and L for loss processes of particles in state p .

We shall assume that the plasma is in a stationary condition. This means that the right-hand term,
(@np=@t)CR = 0. Further, we will assume that the transport in negligible for all excited levels, so
r � (np ~w) = 0 8p � 2. This is justified if the processes which populate and depopulate the levels are fast
with respect to a characteristic transport time. This approach is called the Quasi Steady State Solution [1].

So, in general, we have to solve the following equations:

�
@np
@t

�
CR

= 0 8p > 1 ; (3.2)

@n1

@t
+r � (n1 ~w1) =

�
@n1

@t

�
CR

; (3.3)

@ni

@t
+r � (ni ~wi) =

�
@ni

@t

�
CR

; (3.4)

(3.5)

In a stationary condition, we also have
@n1

@t
=

@ni

@t
= 0 : (3:6)

The solution of these equations can be written as:

np = r0
pn

S
p + r1

pn
B
p (3.7)

= bpn
S
p (3.8)

= (1 + �bp)n
S
p (3.9)

Equation 3.7 gives the solution in terms of a Boltzmann and Saha distribution. Equation 3.8 gives the
solution as an over (bp > 1) or under (bp < 1) population with respect to the Saha density, and equation
3.9 gives the solution as a deviation with respect to the Saha density.
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3.2 Processes in a plasma 11

It is necessary for the calculation to know all the relevant processes which populate and depopulate the
levels. If these processes are known, one can solve equation 3.1 numerically.

To begin with, we assume that
@np

@t
= r � (np ~wp) = 0 8p � 2. We note here that in some parts of the

expanding plasma to be treated, this condition may not hold for p = 2.

3.2 Processes in a plasma

In this section, we limit ourselves to a plasma which contains only atomic constituents and singly ionized
ions.

The processes relevant for our model are collisional (de)excitation to an excited level p , collisional
ionization and recombination, radiative deexcitation to and from p and radiative recombination. We
assume that only collisions with electrons are frequently enough to have a significant influence on the
colisional-radiative behaviour of the plasma.

Thus, in a stationary condition, without transport, we have for any level p :

Number of processes populating level p = Number of processes depopulating level p ;

So, the population density of level p follows from:

ne

X
q<p

nqKqp

| {z }
coll: excit:

+ ne

X
q>p

nqKqp

| {z }
coll: deexcit:

+
X
q>p

nqAqp

| {z }
rad: deex: to

+ ne
2niK+p| {z }

coll: recomb:

+ ne ni�rad| {z }
rad: recomb

=

nenp
X
q<p

Kpq

| {z }
coll: deexcit:

+ nenp
X
q>p

Kpq

| {z }
coll: excit:

+ np
X
q<p

Apq

| {z }
rad: deex: from

+ nenpKp+| {z }
coll: ion:

(3:10)

As can be seen from equation 3.10, we assume that the plasma is optically thin: �pq = 1. This is a valid
assumption for the plasma which is considered; only the Lyman transitions in hydrogen (n � 2 ! n = 1)
could be trapped. (Trapping means that �pq < 1). In this work we assume however that the plasma is also
for this radiation optically thin.

The goal of the CR-model is to form a set of coupled equations like 3.10 for each level, and then solve them
numerically. Some properties of the model are given in the following subsections.

To reduce computer time and to increase the reliability, a cut-off procedure for the highest levels is used
[2].

A more detailed discussion about the used equations can be found in the followingsubsection. The program
listings can be found in appendix B.

3.3 Calculation of the rate coefficients

A collisional (de)excitation process is given by:

Xp + e� +Epq � Xq + e� : (3:11)

In equilibrium, detailed balancing exist:

nen
B
pKpq = nen

B
qKqp (3:12)

where B denotes the Boltzmann equilibrium density. Applying the Boltzmann distribution, the reverse rate
coefficients can be calculated as follows:

Kqp

Kpq

=
gp

gq
exp

�
Eqp

kTe

�
: (3:13)
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The rate coefficients, calculated with equilibrium assumptions, also holds in non-equilibrium cases. The
rate coefficients Kpq are calculated using the results from Vriens and Smeets [3]. These are semi-empirical
formulas, assuming a hydrogenetic structure of atoms. For an element with one excited electron the
hydrogenic approach becomes more accurate for higher excited states.

The rate coefficient Kpq in this approximation is given by [3]:

Kpq =
1:6 � 10�13

p
kTe

kTe + �pq
e"pq

�
Apq ln

�
0:3kTe

Ry
+�pq

�
+Bpq

�
[m3s�1] ; (3:14)

where "pq := Epq=kTe , kTe in eV and Ry = 13:595 eV. We see that the transition probabilities Apq are
needed to calculate Kpq . The radiation transition probabilities are input parameters for the model, and are
taken from [4]. With s := q � p we have:

�pq = exp

�
�
Bpq

Apq

�
+ 0:06

s2

qp2
: (3:15)

�pq =

�
3 + 11

s2

p2

�
Ry � ln

�
1 +

p3kTe

Ry

�

6 + 1:6qs+
0:3
s2 + 0:8

q1:5

p
s
js� 0:6j

(3:16)

In these equations, p and q are the effective quantumnumbers, given by:

p = Z

s
Ry

Ei � Ep

: (3:17)

Further, Bpq is given by:

Bpq =
4Ry2

q3

 
1
E2
pq

+
4Epi

3E3
pq

+ bp
E2
pi

E4
pq

!
; (3:18)

where:

bp =
1:4 ln(p)

p
�

0:7
p
�

0:51
p2 +

1:16
p3 �

0:55
p4 : (3:19)

For collisional ionization and recombination, the reaction is:

Xp + e� � X+ + 2e� : (3:20)

Therefore, detailed balancing gives:

nen
S
p
Kp+ = ne

2ni
SK+p : (3:21)

where S denotes the Saha equilibrium density. Applying the Saha equation, the reverse rate coefficients
are given by:

K+p
Kp+

=
gp

2g+

�
h2

2�mekTe

�3=2

exp

�
Ep+

kTe

�
: (3:22)

In the model we use the following equation, derived by Vriens and Smeets [3]:

Kp+ =
9:56 � 10�12(kTe )

�1:5e�"p+

"
2:33
p+ + 4:38"1:72

p+ + 1:32"p+
[m3s�1] : (3:23)

where "pi := Epi=kTe . These equations are implemented in unit New Solv.
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3.4 Solution methods

With all the input parameters, a linear matrix equation is formulated. In general, this equation reads in the
QSS approximation:

r � (np ~wp) = S(np) : (3:24)

The source term S(np) contains the production and destruction processes of level p . For excited levels, it
is given by:

S(np) =
X
q

nq( neKqp| {z }
coll exc

+ Aqp|{z}
rad exc:

)�np

0
B@ne

X
q

(Kpq|{z}
deexc

+ Apq|{z}
rad

)

1
CA+ ne

2niK+p| {z }
3 part rec

� nenpKp+| {z }
ionization

+ ne ni�rad| {z }
2 part rec

(3:25)
and for ions, it is:

S(ni ) = ne

X
q

Kq+nq

| {z }
ionization

� ne
2
X
q

K+pni

| {z }
3 part rec

(3:26)

for 1 � p � pcut off . The QSS approximation assumes that for all excited levels 2 � p � pcut off

r � (np ~wp) = 0.

We limit the calculation to 12 excited levels. Above here, the levels are certainly in Saha equilibrium (this
follows from some criteria which can be found in [2]). This results in a matrix equation:0
BBBBBBBBBBBBB@

�ne

+P
q=1

K1q neK21 � � � neK12;1 ne
2
K+1

neK12 �

+P
q=1

(neK2q +A2q) � � � neK12;2 ne
2
K+2

...
...

. . .
...

...

neK1;12 neK2;12 � � � �

+P
q=1

(neK12;q + A12;q) ne
2
K+;12

neK1+ neK2+ � � � neK12;+ �ne
2
+P

q=1

K+q

1
CCCCCCCCCCCCCA

�

0
BBBB@

n1

n2

...
n12

ni

1
CCCCA = ~0

(3:27)
A solution method of this equation, which is implemented in the procedure Calc Stat is obtained

when we write the population of an excited level as the sum of the gain from and losses to the neutral
ground state and the ion ground state. Therefore, the equations for the neutral ground state and the ion
ground state can both be omitted, they are input parameters of the model:0

B@
�

P
(neK2;q + A2q) � � � neK12;2

...
. . .

...
neK2;12 � � � �

P
(neK12;q +A12;q)

1
CA
0
B@

n2

...
n12

1
CA =

� n1

0
B@

neK12

...
neK1;12

1
CA� ni

0
B@

ne
2
K+2

...
ne

2
K+;12

1
CA (3:28)

Or, in index notation: X
q > 1
q 6= +

cpqnq = �cp1n1 � cp+ni (3:29)

We can now solve the equations once for ni = 0 and n1 6= 0 and once for n1 = 0 and ni 6= 0. Because
of the linearity of the system, the total solution follows from adding the two partial solutions.

For p 6= q , cpq gives the population of level p due to level q :

cqp = neKpq +Apq (3:30)
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and cpp contains the destruction processes of level p :

cpp = �ne (
X
q

Kpq +Kp+) �
X
q

Apq + Jexc (3:31)

where Jexc , the ionization flow, exists only for the cut-off level c . For levels above a certain cut-off level,
the dominant processes in the ionization flow are stepwise excitation and deexcitation. Then, the excitation
flow can be calculated analytically: using the relation �bp = b0p

�6
eff , which holds for highly excited states,

Jexc can be written as a function of the effective quantum number [2]:

Jexc = ne (ncKc;c+1 � nc+1Kc+1;c) = nencKc;c+1

 
1� p6

c

p6
c+1

!
: (3:32)

The coupling coefficient with the ion ground state is given by:

cp+ = ne
2K+p + ne�rad : (3:33)

3.5 Molecular reactions

The following scheme gives an overview of the most important reactions in a molecular hydrogen plasma
which result in the loss of H+ ions, one of the main scopes of this study:

H+ + Hv�4
2 �! H + H+2

8<
:

H+2 + e� �! H + H�

H+2 + H2 �! H + H+3 fH+3 + e� �! Hv�4
2 + H

(3:34)

For a cold hydrogen gas, the first reaction has a low rate coefficient for v � 4, since the process is
endothermic [7]. We assume that the reaction takes place in two steps: first, the molecule is vibrationally
excited to v > 4 and then the charge exchange takes place. We assume that for this process � � 10�18

m2 and K � 2:5 � 10�15 m3s�1 , typical values for charge exchange [7]. The most important reactions are
given in table 3.1 [7], [8], [10], [11]. More reactions are given in A. For reaction 11, no rate coefficient
was found in literature, but because the rate coefficient here is determined by the Coulomb interaction, as
in reactions 7 and 9, we assume that the rate coefficient for these reaction is almost the same [11]. Some of
the given rate coefficients, in particular K2 and K5 , are still under discussion. Here, data obtained from
[10] is used. It is expectable, however, that K2 should be decreased.

Reaction mechanism Rate coefficient [m3 /s] �E
nr. 0.3 eV 0.5 eV 1 eV [eV]

Hv�4
2 + H+!H+2 + H K1 = 2:5 � 10�15 2:5 � 10�15 2:5 � 10�15 -0.063

Hv�4
2 + e� !H + H� K2 = 2:8 � 10�14 2:8 � 10�14 2 � 10�14 1.836

H+2 + H2 !H+3 + H K3 = 1:1 � 10�15 1 � 10�15 2:8 � 10�16 -1.92
H+2 + e� !H� + H K4 = 1:2 � 10�13 8 � 10�14 5:5 � 10�14 -0.75
H+3 + e� !Hv>4

2 + H(2) K5 = 5 � 10�14 4 � 10�14 4 � 10�14 3.164
H+3 + e� ! 3H K6 = 2 � 10�14 1:6 � 10�14 1:2 � 10�14 -4.546
H+ + H� !H + H(n = 2) K7 = 1:3 � 10�15 1:5 � 10�15 2 � 10�14 -2.649
H� + e� !H + 2e� K8 = 5 � 10�16 2:5 � 10�15 1:5 � 10�14 0.75
H+ + H� !H + H(n = 3) K9 = 4:1 � 10�14 4 � 10�14 4 � 10�14 -0.761
H� + H ! 2H + e� K10 = 5 � 10�16 7 � 10�16 1 � 10�15 0.75
H� + H+3 ! 2H2 K11 = 3 � 10�14 3 � 10�14 3 � 10�14 -12.784

Table 3.1: The most important reactions and their rate coefficients and energies for 0:3 eV < T e < 1 eV .
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For collisions between heavy particles, one has to take into account that the time scale on which these
reactions occur is larger with a factor �

p
mi =me � 45. This could be of influence if transport properties

become important and not all reactions get a chance to equilibrate.

For reactions between heavy particles, the target particle’s energy can be important [10]. In the tables, a
particle energy of 1 eV was taken for the target particle.

A possible problem arises with reaction 5. The very high energy difference results in a high rate coefficient
for the backreaction. However, because with Tvib = 0:3 eV the fraction of molecules with v � 4 is
1:56 � 10�3 , the effect is limited. However, if the vibration temperature becomes high, the back reaction
wins relatively more in importance.

Further, many molecular ions are created in excited levels. This causes differences in the reaction energies
which are not taken into account in the calculations. This plays, for example, a role in reaction 5. This
reaction is very endothermic. Therefore, it is probable that H+3 is in an exited state, which would reduce
this endothermicity.

To determine the energy difference of a reaction, we split the reaction into parts. For the first reaction
equation in table 3.1 this gives:

Hv=4
2 ! H2 Produces 1.89 eV,
H2 ! H+

2 + e Requires 15.422 eV,
H+ + e ! H Produces 13.595 eV,

so �E = 15:422� 1:89� 13:595 = �0:063 eV.

The vibrational energy differences are calculated using the equations in section 3.6. The excitation from H2

to Hv=4
2 requires 1.89 eV. For the other energies we have the ionization energy from H2 to H+

2 = 15:422
eV, the dissociation energy for H 2 to 2H = 4:476 eV, the dissociation energy for H� to H+e = 0:75 eV
and the dissociation energy of H+

3 to H+
2 and H = 6:5 eV. (All the dissociation and ionization reactions

are endothermic). Then, we get for the reverse rate coefficients:

The reverse rate coefficients, which we denote with K0 , can be obtained by detailed balancing. We use
the assumption that there is equilibrium on both a microscopic level and a macroscopic level and eliminate
all quantities which are dependent on this equilibrium from the resulting equation. It must be emphasized
that the rate coefficients which are obtained in this way are also usable when there are deviations from
equilibrium. For the first reaction equation in table 3.1 equilibrium requires:

1:Macroscopic : nHv>4
2

niK1 = nH+2
n1K

0

1 ��E ; (3:35)

2:Microscopic :
nHv>4

2

gHv>4
2

ni

gi
=

nH+2

gH+2

n1

g1
exp

�
�E

kTh

�
: (3:36)

where �E < 0 if the reaction is exothermic. Now, we divide equation 3.35 by 3.36. This gives:

K1gHv>4
2

gi = K0

1gH+2
g1 exp

�
��E

kTh

�
: (3:37)

We use Th here because there are no electrons involved in this reaction. So we get:

K0

1

K1
=

gHv2
gi

gH+2
g1

exp

�
�E

kTh

�
: (3:38)

K0

1

K1
=

gHv>4
2

gi

gH+2
g1

e�0:063=T̂ ; (3.39)

K0

2

K2
= 2

p
2
gegH2

g1gH�

�
me

m1

�3=2

e1:836=T̂ ; (3.40)
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K0

3

K3
=

8p
27

gH+2
gH2

gH+3
g1

e�1:92=T̂ ; (3.41)

K0

4

K4
= 2

p
2
gH+2

ge

g2g1

�
me

m1

�3=2

e�0:75=T̂ ; (3.42)

K0

5

K5
=

p
54
4

gH+3
ge

gH2g2

�
me

m1

�3=2

e3:164=T̂ ; (3.43)

K0

6

K6
=

p
27
gH+3

ge

g3
1

�
me

m1

�3=2�
h2

2�m1kT

�3=2

e�4:546=T̂ ; (3.44)

K0

7

K7
=

gH�gi

g1g2
e�2:649=T̂ ; (3.45)

K0

8

K8
=

gH�

g1ge

�
h2

2�mekT

�3=2

e0:75=T̂ ; (3.46)

K0

9

K9
=

gH�gi

g1g3
e�0:761=T̂ ; (3.47)

K0

10

K10
=

gH�

g1ge

�
h2

2�mekT

�3=2

e0:75=T̂ ; (3.48)

K0

11

K11
=

p
27
8

gH+3
gH�

g2
H2

e�12:748=T̂ : (3.49)

The numerical factors arise from the different masses of the ions.

For the statistical weights, we use gH� = 1, gH+3
= 1, gH+2

= 20 and gH2 = 14. For Hv�4
2 , we take

g = gH2 � 4 because there are 4 vibrational levels which are not used. Rotation was neglected here. We
note that these values have for the molecular ions mainly an indicative value, particulary for H+

3 . For H2 ,
we assumed that rotational and vibrational levels had a thermal occupation with T vib = Trot = 0:3 eV.
Then, g is in essence the product of the state sums Zv and Zr for vibration and rotation for hydrogen.
They can be calculated from [17]:

Zv =
1X
v=1

e�(v+1=2)�v=T =
e��v=2T

1� e��v=T
(3:50)

and

Zr =
1X
l=0

(2l + 1)e�l(l+1)�r=T

�
1Z

0

(2l + 1) exp

�
��r

T
l(l + 1)

�
dl =

T

�r
(3.51)

where �v is the characteristic vibration temperature and �r the characteristic rotation temperature. For
hydrogen, �v = 6140K and �r = 85:5K. Now, we have

Ztot = Zv � Zr : (3:52)

For reactions which contain electrons, T should be set equal to Te . For reactions which only contain
heavy particles, T should be set to Th , this is the case with K1 , K3 , K7 , K9 and K11 .

A detailed list of molecular reactions in a hydrogen plasma is given in appendix A [10]. The rate coefficients
are given for four electron temperatures: 0.3, 0,5, 1 and 1.5 eV. For temperatures between two of these
temperatures, a linear interpolation was made. This fits well enough, as can been seen in figure 3.1.
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Figure 3.1: The rate coefficient for the reaction H+
2 + H2 ! H+

3 +H as a function of the temperature
and for several values for the energy of the incoming particle according to [10]. � � � � � � : cross section
� , : rate coefficient K = h�vi .

If we limit ourselves to the reactions given in table 3.1, the balance equations read:

For H+
2 :

nH+2
[n1K

0

1 + nH2K3 + neK4] = ninHv>4
2

K1 + n1[nH+3
K0

3 + nH�K
0

4] ; (3:53)

For H+
3 :

nH+3
[ne (K5 +K6) + n1K

0

3 + nH�K11] = nHv>4
2

n2K
0

5 + n3
1K

0

6 + nH2nH+2
K3 + n2

H2
K0

11 ; (3:54)

For H� :
nH� [n1K

0

2 + neK8 + ni (K7 +K9) + n1K10 + nH+3
K11] =

nenHv�4
2

K2 + n1n2K
0

7 + n1ne
2K0

8 + n1n3K
0

9 + n2
1neK

0

10 + n2
H2
K0

11 : (3:55)

And the molecular processes which involve H � are:

nH�nHK
0

4 + �p2n2(n1K
0

7 + nHv>4
2

K 0

5) + �p3n1n3K
0

9 =

nenH+2
K4 + �p2(ninH�K7 + nenH+3

K5) + �p3ninH�K9 ; (3:56)

where �pq is the Kronecker delta: �pq = 0 if p 6= q and �pq = 1 if p = q .

3.6 Vibrational and rotational distributions

Because exact references on reactions which populate vibrational excited states are not present, we try to
calculate the vibrational distribution of the H 2 molecules with a model with only one parameter: Tvib . The
influence of rotational excitation is neglected.
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The potential energy V of a harmonic oscillator is given by:

V = 1
2 b(r � r0)

2 ; (3:57)

where r is the distance to the equilibrium position r 0 . For hydrogen, r0 = 0:07 nm. If, like the hydrogen
molecule, the oscillator is quantized, we can calculate the possible energy levels with the Schrödinger
equation. In this case, the eigenvalues of this equation are given by:

E = ~!0(v +
1
2 ) ; (3:58)

where v is the quantum number of vibration, which can only take integer values, and ! 2
0 = b=m . For

hydrogen, ~!0 = 8:734 � 10�20 J.

Because H2 is not a perfect harmonic oscillator, (the potential energy can be much better approximated by
a Lenard-Jones potential and is not quadratic for large r ), we can expand in v + 1

2 for a small deviation:

E = ~!e[(v +
1
2 ) � x(v + 1

2 )
2 + y(v + 1

2 )
3 + :::] : (3:59)

where x and y � 1, and !0 = !e(1 � x + 3
4y + :::) . For hydrogen, x = 57=2339 = 0:0244 [9]. The

term � x becomes important for higher values from v . For a discrete energy distribution, the Boltzmann
statistics give:

n(v) = gv
ntot

Zv

exp

�
�E(v)

kT

�
: (3:60)

In this equation Zv is the so called state sum or partition function:

Zv =
vmaxX
v=0

g(v)e�E(v)=kT : (3:61)

g(v) takes the easy form g(v) = constant, so the number of molecules in each vibrational state is
proportional to exp(�E(v)=kT ) � exp(�~!e(v � xv2)=kT ) . [9]. The zero-point energy can be left out,
since to add this to the exponent would mean only adding a factor that is constant for all the vibrational
levels and would cancel out [9]. vmax is the value of v for which the dissociation energy is reached. For the
electronic ground level of the H 2 molecule, this occurs for vmax = 14. Now, the distribution of hydrogen
over the vibrational states is given by:

n(v) =

ntot exp

��~!e(v � xv2)

kTvib

�
14X
v=1

exp

��~!e(v � xv2)

kTvib

� : (3:62)

Even if the vibrational levels are not in equilibrium, which is to be expected, this model might give accurate
results for a certain Tvib because in the present model the 2 reactions which need vibrationally excited
molecules only molecules with v � 4 are needed. We can match Tvib so that it gives the actual number of
molecules with v � 4. It must be noted however, that formation of H � actually requires higher vibrational
levels, up from v = 9 or 10. This can be understood from potential energy diagrams of these states, as can
be found in [21].

The energy of a rotationally excited molecule in first order is given by:

E(j) =
~

2

2I
j(j + 1) = j(j + 1)B ; (3:63)

where B = 5:84 � 10�22 J for hydrogen and the statistical weight of each level is:

g(j) = 2j + 1 : (3:64)
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The influence of rotationally excited molecules is unknown. The energy of a state v = 0; j = 23 is
approximately the same as v = 4; j = 0. But because the statistical weight of the first state is 47 and for
the second 2, it can contribute more to a reaction where the energy difference is the most important factor
in the value for the rate coefficient. Hence rotational excitation can be more important than vibrational
excitation if Trot � Tvib . At this point, the present model needs to be extended in the future.

Applied to the H+=H� source, the creation of vibrationally and/or rotationally excited molecules on the
wall of the vessel is an unknown factor. It is known that the process of associative recombination of
hydrogen atoms at metals returns molecules in vibrationally excited levels.

3.7 Extension of the model with molecular terms

To use the CR model for plasmas which also contains H 2 molecules in various excited states, the following
method was performed:

1. The number of free parameters of the model is increased by 2: the density of H 2 molecules and the
vibrational temperature Tvib (see section 3.6). So, the free parameters now are ne = ni , n1 , nH2 ,
Te and Tvib . Initially, we used the approximation ne = ni , although the densities of nH+3

and nH�

can be quite large, sometimes even larger than ni . This problem is solved by determining n i with
an iteration procedure.

2. The vibrational excitation distribution of the H 2 molecules is calculated with a vibrational temperature
Tvib . The vibrational distribution is important because some reactions can only be initiated with
vibrationally excited molecules, for example Hv�4

2 +H+ ! H+
2 +H. The influence of rotationally

excited molecules is unknown, as is the influence of the wall of the vessel.

3. The initial state vector (n2; n3; : : : ; n12) was expanded with states H+
2 , H+

3 and H� to
(n2; n3; : : : ; n12; nH+2

; nH+3
; nH�) .

4. The most important molecular reactions were selected. They are discussed in section 3.5.

The problem, arising from the approximation ne = ni could be solved in two ways: first, we could take
ni as an independent input parameter. Second, one could make the model iterative by using local charge
neutrality:

ni = ne + nH� � nH+2
� nH+3

(3:65)

and changing ni in each iteration step:

ni;new = ne + nH� � nH+2
� nH+3

: (3:66)

This second method is what we did in our model. The convergence is very fast, usually only a few (less
then 20) iteration steps are needed to decrease the total net charge density of the plasma below 103 e/m3

with e the elementary charge.

However, sometimes the iteration becomes a divergent process, resulting in unphysical negative densities.
The cause of this problem lies in the sometimes high density of H+

3 ions. This results in a too large
correction on the H+ density, which becomes negative. This problem was solved using a relaxation in the
correction for ni : we change the iteration relation for charge neutrality 3.66 in:

ni;new = x � (ne + nH� � nH+2
� nH+3

) + (1� x) � ni;old : (3:67)

The relaxation parameter x can vary between 0 and 1. In the first iteration step, the program determines the
maximum value of the relaxation parameter for which the ion density is higher than a certain value, usually
103 e/m3 . In the plasma, deviations from charge neutrality in the order of �D=� � 10�5 can be expected.
So 103 is rather small. It would be possible to use a varying relaxation factor in every iteration step, but
this results in a non linear dependence of n i on the iteration parameters and is therefore not done. The
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value 103 e/m3 is chosen instead of 0 to increase the convergention speed: we can expect the ion density
to be > 103 e/m3 in any case.

An other problem arises when we also include collisions between heavy particles like H +
3 and H� in our

model. This gives rise to terms quadratic in the parameters which we want to determine, and therefore, a
linear matrix equation is not valid any more. This problem is solved by approximating the densities n H�

and nH+3
, which arise in reaction equation 11, by initial values nH�;initial and nH+3 ;initial ; these values can

be changed in the same iteration process as the charge neutrality. Because there is only one reaction (nr.
11) incorporated in our model with this problem, the effect of this non-linearity on the model is limited.
An iterative model worked just fine here: the convergence is very fast for most input parameters.

Now, the extended matrix equation becomes:X
q 6=1;+;H2

cpqnq = �n1cp1 � ni cp+ � nH2cp;H2 : (3:68)

We approximate n� with n2 unless an other level is explicitly given in the reaction equation (this is only
the case with reaction 9). Further, we identify nH with n1 . Then, the total matrix equation becomes:0
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Here, f means the fraction H2 molecules with a vibrational quantum number > 4. This fraction is given
by:

f(v � 4) =
1
Z

14X
v=4

exp

�
�~!e(v � xv2)

kTvib

�
: (3:70)

Equation 3.69 can be solved with same method as equation 3.29 in unit new solv.

This results in the flow chart for the model given in figure 3.2.
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Figure 3.2: The flow chart of the numerical model including the iteration process.



Chapter 4

Results of the numerical model

The results obtained with the local model are given.

4.1 Testing the model

If the atomic part of the model is accurate, there should be no deviation from Saha equilibrium if we choose
for n1 the Saha equilibrium density, only collision processes are considered and radiation processes are
neglected. This because the Saha-balance is derived only with collision processes, as can be found in
chapter 2. To test this, it was tried to reproduce the Saha distribution with the model. This succeeded, the
largest deviation of Saha equilibrium in cases where n1 was taken the Saha density belonging to the given
ne was less than 10�15 . The conditions and results are given in table 4.1.

peff bp �bp = bp � 1

1 1.0000 0
2 1.0000 0
3 1.0000 �1:116 � 10�16

4 1.0000 0
5 1.0000 �2:522 � 10�16

6 1.0000 �1:523 � 10�16

7 1.0000 0
8 1.0000 �4:470 � 10�16

9 1.0000 �4:090 � 10�16

10 1.0000 �2:457 � 10�16

11 1.0000 �4:399 � 10�16

12 1.0000 �3:925 � 10�16

Conditions

kTe 0.3 eV
ne 1019 m�3

ni 1019 m�3

n1 = nS
1 9:68 � 1030 m�3


 0 s�1

Table 4.1: Calculated b values without radiative transitions and without radiative recombination for each
atomic level. The value b1 = 1 was used for the calculation. The deviations of 0 are due to numerical
errors.

The results in other conditions (higher T e ) are also good. The calculated densities are given in table 4.2,
together with the theoretical Saha densities. As can be seen, the agreement is excellent.
For n1 , the Saha-equilibrium value is taken. The actual value for n1 is much lower, � 1020 m�3 [6]. So,
according to the model, b1 � 1. So the expanding plasma is a recombining plasma, as it is in reality.

For the molecular part, we looked to the equilibrium densities of each species H+
2 , H+

3 and H� belonging
to each reaction for the given conditions. So, for reaction 1,

Hv�4
2 + H+ ! H+

2 + H ; (4:1)

we get for the equilibrium density of H+
2 :

nH+2
=

gH+2
g1

gigHv�4
2

ninHv�4
2

n1
exp

�
0:063

T̂

�
: (4:2)
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peff bp �bp = bp � 1

1 1.0000 0
2 1.0000 4:913 � 10�16

3 1.0000 5:409 � 10�16

4 1.0000 7:857 � 10�16

5 1.0000 6:829 � 10�16

6 1.0000 8:398 � 10�16

7 1.0000 5:687 � 10�16

8 1.0000 5:577 � 10�16

9 1.0000 4:604 � 10�16

10 1.0000 6:418 � 10�16

11 1.0000 6:520 � 10�16

12 1.0000 7:437 � 10�16

Conditions

kTe 1.0 eV
ne 1019 m�3

ni 1019 m�3

n1 = nS
1 2:663 � 1016 m�3


 0 s�1

Table 4.2: Calculated b values without radiation for each atomic level. The value b 1 = 1 was used for the
calculation. The deviations from 0 are due to numerical errors.

When the calculated density of H+
2 is lower than the density following from equation 4.2 with given n H

and nH2 , there should be less destruction reactions for H+
2 than creation reactions for H+

2 in this balance:
there is no equilibrium in reaction 4.1. When the actual calculated density of H +

2 is higher than the density
following from equation 4.2, there should be more destruction reactions for H +

2 than creation reactions for
H+

2 in this balance.

This should hold for all reactions and all densities. This is used as a check for the model. The effect
occurred also in the simulations, so the model is consistent in this view.

4.2 Locally simulating the plasma

The densities of H+
2 , H+

3 and H� were calculated using the model. We also added a transport frequency
to the balance equations, which arises from diffusion. The total balance equation for each species becomes
with diffusion:

�
@n

@t

�
CR

= r � (n~w) (4:3)

where ~w is the transport velocity (In this case we use the diffusion velocity). We assume that the
approximation r(n~w) = 
tn is valid, so we get [22]:

�
@n

@t

�
CR

= 
tn : (4:4)

The densities of the molecular ions as a function of this transport parameter 
 are given in figure 4.1. Because
the thermal speed of particles is proportional with 1=

p
m , we took 
H+2

= 
H�=
p

2 and 
H+3
= 
H�=

p
3.
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Figure 4.1: Calculated molecular ion densities for hydrogen. T e = 0:26 eV, ne = 3 �1017 m�3 , n1 = 1020

m�3 and nH2 = 7 � 1020 m�3 . 
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The molecular ion densities as a function of the electron temperature are given in figure 4.2. No diffusion
or transport was considered in this calculation.
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Figure 4.2: Calculated molecular ion densities for hydrogen as a function of the electron temperature.
Conditions: nH2 = 7 � 1020 m�3 , � = 0:1 , � = 0:7 , Tvib = Te and ne = ni;initial = 3 � 1017 .

We see here that the density of H+
2 becomes larger than the density of H+

3 . This is caused by the large
dissociation degree of 0.7 which is used in this calculation.

When we calculate the densities of the molecular ions with the more realistic parameters of � = 0:125 and
� = 0:003 we get the result of figures 4.3 and 4.4. The difference between them is, that in figure 4.3 the
vibration temperature is kept constant on 0.3 eV, while in figure 4.4 the vibration temperature is kept equal
to Te .
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Figure 4.3: Calculated molecular ion densities for hydrogen as a function of the electron temperature.
Conditions: nH2 = 7 � 1020 m�3 , Tvib = 0:3 eV, � = 0:003 , � = 0:125 .
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Figure 4.4: Calculated molecular ion densities for hydrogen as a function of the electron temperature.
Conditions: nH2 = 7 � 1020 m�3 , Tvib = Te = Th , � = 0:003 , � = 0:125 .

When we compare figures 4.3 and 4.4 with figure 4.2 we see that the effect of a very high ionization degree
is that the density of H+

2 becomes very large. The influence of the dissociation degree on the H� density
is very small, as can be seen in figure 4.5. The density depends much more on the electron temperature
than on the dissociation degree, although temperature and dissociation degree can not be seen independent
of each other. For H+

2 , the density depends even more emphatic on Te , as can be seen in figure 4.6.
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Figure 4.5: Calculated H� densities for a pure hydrogen plasma as a function of the electron temperature
and the dissociation degree. Conditions: nH2 = 7 � 1020 m�3 , � = 0:1 , Tvib = Te and ne = ni;initial =
3 � 1017 m�3 .
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Figure 4.6: Calculated H+
2 densities for a pure hydrogen plasma as a function of the electron temperature

and the dissociation degree. Conditions: nH2 = 7 � 1020 m�3 , � = 0:1 , Tvib = Te and ne = ni;initial =
3 � 1017 m�3 .

The densities of the molecular ions turned out to be very sensitive for the vibrational temperature. If
Tvib increases, the densities of the molecular ions increase also. The results of the calculation are given in
figure 4.7.
To investigate which reactions are the most important, the number of reactions per second and per m 3 are
calculated. The results for some temperatures are shown in table 4.3.
The densities of the excited states of atomic hydrogen, calculated in the presence of molecular reactions,
are shown in figure 4.8, the calculated values for 4 different ne values are listed in tables 4.4 to 4.7, as are
the bp factors.

The giant overpopulation of H(n = 3) for low electron densities is mainly caused because reaction 9
(H+ + H�

� H + H(n = 3)) gives rise to a net flow in this state.

Further, the giant underpopulation of H(n = 1) with respect to the Saha equilibrium value might also
cause some effects. This large non-equilibrium situation can spread out towards many excited levels.
The Saha equilibrium value for the ratio nS

H2
=nS

H , derived from assuming equilibrium for the reaction
H2 � H + H +�E is given by:

nS
H2

nS
H

=
gH2

gH
nS

H2

�
h2

2�mHeT̂h

�3=2

exp

�
4:476

T̂h

�
(4:5)
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Figure 4.7: Calculated molecular ion densities for hydrogen as a function of the vibrational temperature.
Conditions: Te = 0:26 eV, nH2 = 7 � 1020 m�3 , ne = 3 � 1017 m�3 and n1 = 1020 m�3 .

Number of reactions Number of reactions
reaction: to the right: to the left:

s�1 m�3 s�1 m�3

Hv�4
2 + H+

�H+
2 + H 7:529 � 1020 6:669 � 1019

Hv�4
2 + e� �H + H� 9:205 � 1021 8:229 � 1021

H+
2 + H2 �H+

3 + H 1:066 � 1021 4:320 � 1020

H+
2 + e� �H� + H 5:221 � 1019 2:534 � 1014

H+
3 + e� �Hv>4

2 + H(2) 4:498 � 1020 1:264 � 1016

H+
3 + e� � 3H 1:799 � 1020 2:780 � 102

H+ + H�
�H + H(n = 2) 1:734 � 1020 5:839 � 1013

H� + e� �H + 2e� 1:503 � 1017 1:006 � 1013

H+ + H�
�H + H(n = 3) 5:671 � 1020 3:469 � 1017

H� + H � 2H + e� 2:304 � 1020 1:543 � 1016

H� + H+
3 � 2H2 4:332 � 1018 2:477 � 104

Table 4.3: The number of reactions per s and per m3 for the molecular reactions. Te = 0:26 eV,
ne = 3 � 1017 m�3 , nH2 = 7 � 1020 m�3 , n1 = 1020 m�3 , Th = 0:26 eV, Tvib = 0:30 eV.

For T̂h = 0:3 eV, this gives: nS
H2
=nS

H = 8:6 � 10�27nS
H . For nH2 = 7 � 1020 m�3 , this means that

nS
H = 2:9 � 1023 m�3 .
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p E np=gp bp

1 0.000 5:000 � 1019 9:4747 � 10�12

2 10.196 2:465 � 1011 5:0162 � 10�3

3 12.084 3:144 � 1011 9:1141
4 12.745 6:455 � 108 0:2378
5 13.051 3:184 � 108 0:3806
6 13.217 2:670 � 108 0:6043
7 13.318 2:316 � 108 0:7732
8 13.383 2:016 � 108 0:8641
9 13.427 1:795 � 108 0:9111
10 13.459 1:638 � 108 0:9402
11 13.483 1:529 � 108 0:9625
12 13.501 1:416 � 108 0:9557
ion 13.595 2:748 � 1017

Table 4.4: The densities of the excited levels and the deviations from equilibrium for atomic hydrogen.
Te = 0:26 eV, Tvib = 0:30 eV, ne = 3 � 1017 m�3 , nH2 = 7 � 1020 m�3 .

p E np=gp bp

1 0.000 5:000 � 1019 7:9570 � 10�13

2 10.196 1:628 � 1012 2:7834 � 10�3

3 12.084 3:079 � 1012 7:4963
4 12.745 1:858 � 1010 0:5751
5 13.051 7:190 � 1009 0:7217
6 13.217 4:466 � 1009 0:8489
7 13.318 3:281 � 1009 0:9197
8 13.383 2:649 � 1009 0:9534
9 13.427 2:275 � 1009 0:9700
10 13.459 2:032 � 1009 0:9800
11 13.483 1:867 � 1009 0:9875
12 13.501 1:739 � 1009 0:9853
ion 13.595 9:817 � 1017

Table 4.5: The densities of the excited levels and the deviations from equilibrium for atomic hydrogen.
Te = 0:26 eV, Tvib = 0:30 eV, ne = 1018 m�3 , nH2 = 7 � 1020 m�3 .
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p E np=gp bp

1 0.000 5:000 � 1019 7:7986 � 10�15

2 10.196 4:374 � 1013 7:3273 � 10�4

3 12.084 9:074 � 1013 2:1653
4 12.745 3:073 � 1012 0:9318
5 13.051 9:839 � 1011 0:9681
6 13.217 5:283 � 1011 0:9843
7 13.318 3:610 � 1011 0:9919
8 13.383 2:822 � 1011 0:9954
9 13.427 2:386 � 1011 0:9971
10 13.459 2:112 � 1011 0:9981
11 13.483 1:927 � 1011 0:9988
12 13.501 1:798 � 1011 0:9986
ion 13.595 1:002 � 1019

Table 4.6: The densities of the excited levels and the deviations from equilibrium for atomic hydrogen.
Te = 0:26 eV, Tvib = 0:30 eV, ne = 1019 m�3 , nH2 = 7 � 1020 m�3 .

p E np=gp bp

1 0.000 5:000 � 1019 7:8088 � 10�17

2 10.196 9:537 � 1014 1:5997 � 10�4

3 12.084 1:086 � 1015 0:2594
4 12.745 1:924 � 1014 0:5843
5 13.051 8:216 � 1013 0:8095
6 13.217 4:866 � 1013 0:9079
7 13.318 3:460 � 1013 0:9519
8 13.383 2:751 � 1013 0:9718
9 13.427 2:346 � 1013 0:9817
10 13.459 2:087 � 1013 0:9877
11 13.483 1:912 � 1013 0:9923
12 13.501 1:782 � 1013 0:9909
ion 13.595 1:000 � 1020

Table 4.7: The densities of the excited levels and the deviations from equilibrium for atomic hydrogen.
Te = 0:26 eV, Tvib = 0:30 eV, ne = 1020 m�3 , nH2 = 7 � 1020 m�3 .



30 Chapter 4: Results of the numerical model

105

1010

1015

1020

1025

1030

1035

0 2 4 6 8 10 12 14

n
=
g

in
m

�

3

�!

E in eV �!

np=gp 3

3

3 3

333333333

3

nS

Figure 4.8: Calculated level densities (3) for hydrogen. Te = Th = 0:26 eV, Tvib = 0:30 eV,
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Chapter 5

Extension with a flow model

To make our description of the plasma more complete, flow characteristics of the plasma are added in a
more fundamental way to the completely local collision-radiative model. Here, we assume that only the
flow terms for hydrogen atoms, ions and molecules, and for electrons are important because they are the
main part of the plasma. The molecular ions are treated completely local, and the collision radiative model
is used to calculate source terms.

We use a so called quasi-one dimensional model: we calculate the several densities only as a function of
one parameter, the axial coordinate z . This approach is only valid if the axial gradients are much larger
than the radial gradients. In this model, gradients are approximated with derivates to only one coordinate:

~r' =
1
A

d(A')

dz
: (5:1)

A corresponds to the surface over which the plasma parameters are averaged in the quasi one-dimensional
model. This term takes into account volume effects. The expansion of the plasma is described with an
expansion angle � . The surface A is given by:

A = �r2 = �(r0 + z tan�)2 (5:2)

so
1
A

dA

dz
=

2 tan�
r0 + z tan�

(5:3)

where r0 is the start radius of the plasma and � the expansion angle. The radius of the plasma is determined
with the diffusion coefficient. We start with the start radius r 0 . Then, we calculate the ambipolar diffusion
coefficient Damb with:

Di =
ekT�

mi e
=

e� T̂

mi
(5:4)

and

Damb = Di

�
1 +

Te

Ti

�
=

e�i0

mi
( T̂e + T̂i ) : (5:5)

with �i0 the momentum relaxation time between neutrals and ions. Then, tan� is given by [6]:

tan� =
2D
ur

(5:6)

and the plasma radius can be calculated with

rn+1 = rn + d tan� (5:7)

where d is the step size.

The general continuum equation 3.1 is given by:

@np
@t

+r � (np~u) =
�
@np
@t

�
CR

: (5:8)
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with ~u the drift velocity of the plasma. This equation can, for each species, be written in the following
form:

1
A

d

dz
(nH+uA) = SH+ ; (5.9)

1
A

d

dz
(nHuA) = SH ; (5.10)

1
A

d

dz
(nH2uA) = SH2 ; (5.11)

1
A

d

dz
(neuA) = Se : (5.12)

The momentum conservation equation can be written in the followingform, with the density � = m H(nH+
nH++2nH2+2nH+2

+3nH+3
+nH� ) and the pressure p = (nH+nH++nH2+nH+2

+nH+3
+nH� )kTh+nekTe :

�

�
@~u

@t
+ (~u � ~r)~u

�
= �~rp : (5:13)

Because the quasi one-dimensional model is stationary, the time derivative vanishes and this equation
becomes:

�u
du

dz
= �dp

dz
: (5:14)

The general form of the energy conservation equation for one species is:

3
2

�
@p

@t
+ (~u � ~r)p

�
+ 5

2 p
~r � ~u+ ~r � ~q = Q : (5:15)

We neglect the heat conductance ~r�~q so, in the one-dimensional model, the energy conservation equations
for the heavy particles and the electrons read:

1
A

d

dz
(( 3

2 nH+ +
3
2 nH +

5
2 nH2)kThuA) +

ph

A

d(uA)

dz
= Qh ; (5.16)

1
A

d

dz
( 3

2 nekTeuA) +
pe

A

d(uA)

dz
= Qe : (5.17)

The source terms can be split into a molecular part and an atomic collision - radiative part. The atomic
mass terms are given by:

�
dnH2

dt

�
atomic

= 0 (5.18)�
dni

dt

�
atomic

= ne

X
q

Kq+nq � ne
2ni

X
q

K+q � ne ni�rad (5.19)
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dt

�
atomic
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�
dni

dt

�
atomic

(5.20)�
dne

dt

�
atomic

=

�
dni

dt

�
atomic

(5.21)

For hydrogen atoms, only ionization loss is taken into account. The molecular terms can be deduced from
table 3.1:

�
dnH2

dt

�
mol

= nH�nH+3
K11 � n2

H2
K0

11 (5.22)
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The total source term can be found by adding the atomic and molecular terms:

S =

�
dn

dt

�
atomic

+

�
dn
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�
mol

: (5:26)

The energy source terms are taken from [13]. For the heavy particles, the energy source term is given by:

Qh = ne

X
�=i;at;mol

�
2me

m�

�
3
2 k(Te � Th )h�e�i : (5:27)

Here h�eii and h�eai are the average collision frequencies for momentum transfer between electron-ion and
electron-neutral collisions respectively. One should interpret this expression with care; especially when T e

and Th differ not much. This does not imply that Qh is small. It rather means that the coupling between
Th and Te is good and therefore h�eii could be large.

h�eii is given by:

h�eii = 4
p

2�
3

�
e2

4��0me

��
me

kTe

�3=2

ni ln(�) : (5:28)

The interaction terms with neutral particles are neglectable compared with the one with electrons when the
ionization degree � > 1%. For very small energies and ionization degrees, we find as an approximation
[1]:

�ea = na�eave = 10�18nav
�3=5
e : (5:29)

Because equation 5.29 is not very accurate [1], one should check whether the results, obtained by using it,
are acceptable.

The code to calculate the source terms is shown in appendix C. The mass source terms are a sum of
differences in the number of reactions going to the left and the number of reactions going to the right. Here,
pop[plus] = ni , pop[plus+1] = nH+2

, pop[plus+2] = nH+3
and pop[plus+3] = nH� . deelv

is the part of H 2 molecules with a vibrational quantum number larger than 4.

This results in the following matrix equation:
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Here, 
H = 5
3 and 
H2 =

7
5 are the ratios Cp=Cv of atomic respectively molecular hydrogen.

By inverting the matrix numerically, relations for the derivates at the right-hand side of equation 5.30
appear. The properties we want to know are then achieved by Runge-Kutta integration.



Chapter 6

The experimental setup

The experimental setup is given. The main parts of the setup are discussed in more detail.

6.1 General overview

The plasma is created in a cascaded arc [6,8], which is shown in figure 6.1. A cascaded arc exists of a
varying number of water cooled copper plates, isolated with boron nitride disks. In the middle is a small
channel through which gas flows. Gas is fed in at the cathode side. In figure 6.1, the plasma flow in the arc
is from left to right. There are 3 cathodes, which are screwed slanted in the arc. The large plate at the right
is the anode plate. Between the cathode and the anode, a current is generated which ionizes the flowing gas
and creates a plasma. Through a nozzle hole in the anode plate, the plasma can flow out. After it leaves the
arc, the plasma expands supersonically into a low pressure vessel.

Figure 6.1: A schematical drawing of the cascaded arc with 4 plates.

The plasma emits light, which is detected with a spectroscopic setup through a quartz window in the
vessel. The general overview of the spectroscopic measurement setup is shown in figure 6.2. The light
which escapes from the plasma is focussed through a quartz lens on the entrance of a glass fiber with an
acceptance cone angle 2a = 25� . The fiber guides the light to a monochromator, who sends the output to
a photomultiplier. From there, the signal of the photomultiplier is converted to TTL pulses and stored in a
computer for further processing.

Magnetic field coils are located around the cascaded arc. The current through these coils was 250 A in the
measurements which were performed. The magnetical field which was applied to the plasma is calculated
numerically. It contains mainly an axial field component Bz . At 5 cm from the axis, the radial field strength
Br reaches nowhere higher values than 10% of Bz . The strength of this field on the axis is shown in figure
6.3.

35
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Figure 6.2: The experimental setup for spectral measurements with photon counting. The whole experiment
is computerized.

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

�10 �5 0 5 10 15 20 25 30 35 40

B
z

in
Te

sl
a

�!

Axial position in cm �!

Figure 6.3: The magnetical field on the axis with I c = 250A . The exit of the arc is located at z = 0 .

The position at the plasma which is viewed can be selected with a zy -positioning system. This system
contains of 2 translation rails which are controlled by pressured air and 2 linear displacement detectors
which are variable resistors. This system is controlled by a computer with a PCL-718 laboratory card. The
electrical schemes and the control programs for the positioning system are given in appendix D.
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6.2 Calibration

The system was calibrated with an OSRAM tungsten ribbon lamp. A second order filter with a cutoff of
3500Å was used to avoid second order reflections in the monochromator. The measured signal is shown in
figure 6.4. The temperature of the lamp was 2173 K by a current of 13.134 A.
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Figure 6.4: The measured signal from a tungsten ribbon lamp. The second order filter was inserted above
� = 3500 Å .

The transmission of the whole system as a function of the wavelength was calculated by comparing the
measured signal of the Tungsten Ribbon lamp with the theoretical emission of the lamp. The transmission is
shown in figure 6.5. While calibrating, we measure a photon count rate I

tung
exp . This count rate is connected

to the system parameters by:
I tung

exp = I
tung
theor(�) ��� ��
 �A � �eff (6:1)

where I
tung
theor(�) is the theoretical emission of the tungsten lamp, A the surface of the detection area and �eff

the efficiency of the setup. �� is the width of the apparatus profile at half height, 5Å in our case (because
�� is so small, no integration is needed), �
 is the solid angle and � eff is the efficiency of the whole
setup and A is the imaged surface of the tungsten.

A last correction should be made when determining absolute densities from the measured signal: because
the quartz of the tungsten ribbon lamp gives rise to internal reflections, less signal is received from the lamp
than follows from the temperature calculated with the measured current through the lamp. This results
is an underestimation of the system sensitivity, which results in an overestimation for the level densities.
Therefore, the measured densities should be multiplied with a factor < 1, the De Vos factor [19]. For the
lamp used, this factor was 0:92.

An other source of errors is straylight in the monochromator. This straylight tracts attention in the very
large transmission for short wavelengths. However, this is not a real transmission. The peak is caused
by stray light on the monochromator grating. This straylight intensity becomes relatively more important
for wavelengths where the tungsten lamp emits very little light. For more detailed information, see [14],
page 92. To determine the amount of stray light, measurements with 2 filters were performed. One filter
cuts at 3150Å , the other at 4350Å . The signal which is measured here is a combination of straylight and
signal from the lamp. However, the band lamp emits so little light here that the contribution of the lamp
is neglected. Between � = 3500 Å and � = 4000 Å , signal and stray light are of the same order of
magnitude. To correct for this effect, 2 measurements on the tungsten band lamp were done:
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Figure 6.5: The transmissionof the whole system, determined with a tungsten ribbon lamp before correction
for straylight at low wavelengths.

1. A measurement with a filter that cuts at 3500 Å . Here, all signal plus straylight above 3500 Å is
detected.

2. A measurement with a filter that cuts at 4350 Å . Here, all signal plus straylight above 4350 Å is
detected.

The straylight intensity which occurs when using the filter which cuts at 4350Å is almost equal to the
amount which occurs when using the filter which cuts at 3500Å because there is not much stray light
with wavelengths between 3500 Å and 4350 Å . The difference between the detected signals in the two
measurements is considered to be stray light. This assumption is valid if the amount of stray light is not
very wavelength dependent. This turns out to be true: it is fairly constant at about 1620 counts/50sec (50
sec is the measurement time while calibrating), as can be seen in figure 6.6. Only for very low and high
wavelengths this is not true any more because zeroth order light plays a role there, but no measurements
are performed there. The straylight is substracted from the measured signal in the measurement with the
filter which cuts at 3500 Å before a calibration datafile was made. The 3500 Å filter was used in all further
measurements to avoid second order reflections in the monochromator.

Because zeroth order light is only important for very small wavelengths, where the system is not reliable
anyway, no correction is performed for deviations caused by this effect.
This correction results in an other transmission of the system, which is shown in figure 6.8. For � < 3450Å ,
the system is not reliable, but none of the hydrogen Balmer lines, which are measured in this study, are in
this wavelengh region, so this is no problem.
The whole plasma emits light. When measurements at the plasma are performed, a part of this light is
projected on the glass fiber and gives a signal. In the ideal situation, a small cylinder is projected on the
fiber, but because we work only with one lens, in fact a double cone is represented on the fiber. This is
shown in figure 6.9. We can approximate the measurement volume with a cylinder with radius the image
of the glass fiber in the middle of the plasma: the volume is in reality a double cone, but because the light
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Figure 6.6: The measured signal with a filter which cuts at 3150 Å and the signal with a filter that cuts at
4350 Å .

PM

S2

S1
M1

M2

G

L

Figure 6.7: Scheme of a plane-grating monochromator. L is a source, S1 and S2 are the entrance and
exit slits, M1 and M2 are the collimator and the camera mirror, G is a reflection grating and PM is a
photomultiplier.

emission is smaller in the outer range of the cone, this compensates for the larger volume if the plasma
properties don’t change significant into this volume. Because the opening angle of the glass fiber is small,
the volume is limited and this is not the case. Because the linear magnification of a lens is given by �b=v
were b is the distance from the lens to the image and v the distance from the lens to the object, the detection
volume is given by:

Vd =
�`d2

4v2
(a +D)2 = 7:8 � 10�7m3 : (6:2)

were a is the distance from the lens to the window and ` the distance from the window to the middle of
the vessel. d Is the diameter of the glass fiber, which is 3mm in our case. D is approximately 3 cm. All
light emitted in the detection volume falls within the acceptance angle of the glass fiber.
A list of all used equipment is given in table 6.1.
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Figure 6.8: The transmission of the whole system, determined with a tungsten ribbon lamp, after the
correction for zeroth order light.
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Figure 6.9: The representation of the plasma on the measurement system. The detection volume is shown
with fat lines. The linear magnification is 1.53. The focal distance of the lens is 14 cm, it’s diameter is
38.39 mm.

Instrument Type

Monochromator Jarell Ash 82-000
Photomultiplier EMI 9698 QB
Amplifier/discriminator EG & G PARC
3500Å filter Schott WG335
4350Å filter Schott GG435

Table 6.1: A list of the used equipment in the experimental setup.



Chapter 7

Experimental results

7.1 Measurements on a hydrogen-argon plasma

When we measure a spectral line in the z�y plane, we measure always a line integral of the whole emission
in the line of sight. To determine radial information of this measurements, the mathematical technique of
Abel inversion was applied. This technique is explained in the following intermezzo.

Intermezzo: Abel-inversion

If one measures electromagnetical or particle emissions from a plasma, one always measures a signal which
is produced by the whole line of sight, at least if the plasma is optically thin for that special radiation. This
situation is drawn in figure 7.1. We measure the signal S :

S(y; �) =

aZ
�a

"(r; �)dx =

aZ
�a

"(r; �)
rp

r2 � y2
dr (7:1)
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Figure 7.1: A measurement at a
plasma on which Abel-inversion can
be applied to achieve radial infor-
mation.

As a measure of simplification, it will assumed here that "(r; �) =
"(r) , which implies cylindrical symmetry. To calculate the radial
emission "(r) from this signal, one should Abel invert the signal:

"(r) =
�1
�

aZ
r

dS(y)

dy

p
y2 � r2dy (7:2)

dS(y)

dy
can be determined by measuring the signal on more

positions in the plasma.

If equations 7.1 and 7.2 are to be solved numerically, which is the case when S(y) is not known, the
measured signal must be smoothed to filter out noise. This can be achieved by applying a Fourier transform
on the measured signal. Then the highest frequencies, which contain most of the noise, are removed, and
a smoothed profile is obtained by an inverse Fourier transform. This method is described in [15]. An
other method if fitting of a function of which the Abel inverted function can be calculated analytically. For
example, when the measured intensity profile S(y) can be described by a Gausian:

S(y) =

1Z
�1

"(x; y)dx = a exp

�
�y2

b2

�
; (7:3)

with a = "(0) b
p
� . The Abel inverted emission curve, "(x; y) = "(r) is given by:

"(r) =
a

b
p
�

exp

�
�r2

b2

�
: (7:4)
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To determine the level densities from the Abel inverted intensity profiles, one has to know the relation
between the level densities n and the signal strength S . We can determine this relation from the following
balance: for the radiation which is emitted at the transition p! q we find [1]:

Number of spontaneous emissions /m3 = npApq ;

Number of stimulated emissions /m3 = npBpq��pq ;

Number of absorptions /m3 = nqBqp��pq :

(7:5)

here �� is the energy density of the wavelength belonging to the transition p ! q . The relation between
the Einstein coefficients B and the transition probabilities A is given by:

Bpq =
c3Apq

8�h�3
pq

(7:6)

and
Bpq

Bqp

=
gq
gp

: (7:7)

In the plasma under consideration, the absorption from lines from transitions p ! q with q 6= 1 can be
neglected. The level density can be determined from the Abel inverted, calibrated data, with a solid angle
of 4� because the tungsten ribbon lamp is calibrated per sr:

np = CV

4�Sp2

Ap2
(7:8)

where S is the number of photons emitted by the plasma. When we assume that the whole line is covered
by the openingslits of the monochromator, we measure a photon count rate of:

Iline(y) =

R
x

(np(x; y)AqpA ��
 � �eff)dx

4�CV

=
A ��
 � �eff �Aqp

4�CV

Z
x

np(x; y)dx (7.9)

=
I

tung
exp

I tung
theor

Apq

�� � 4�CV

Z
x

np(x; y)dx

I
tung
exp =I

tung
theor is equal to the transmission T(�) . The De Vos factor CV results from internal reflections in

the tungsten lamp which was used for calibration and is 0.92 in this case. It is very weakly dependent on
the wavelength. This dependence is neglected. SoZ

x

np(x; y)dx =
Iline ���
AqpT(�)

(7:10)

A two dimensional scan of the intensities of several hydrogen Balmer lines was made. Measurements for
the lines from H(n = 3 ! n = 2) to H(n = 11 ! n = 2) and the lines H(n = 15 ! n = 2) and
H(n = 17 ! n = 2) were performed. Because for transitions between H(n > 17 ! n = 2) the distance
between the lines becomes smaller than 5Å , these lines can not be separated with this setup.

At the beginning of each measurement, the intensity of the H� line was measured as a gauge: each
measured intensity is multiplied with a constant which makes the intensity of the H � line the same for each
measurement. The gauge factors are shown in table 7.1.

To take the background radiation into account, a complete spectrum has been measured between � = 3640Å
and � = 3900Å to determine the line/continuumratio. This measurement is shown in figure 7.2. To correct
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for the background radiation, the number of background counts for a certain wavelength is divided by the
total number of counts for that wavelength. For the lines H(n = 10 ! n = 2) , H(n = 11 ! n = 2) and
H(n = 15 ! n = 2) , also photons emitted by molecules at the same wavelength must be substracted, as
can be seen in figure 7.2. The resulting back ground correction factors are given in table 7.1.

The background radiation is given by 2 contributions [1,14]:

1. The free bound radiation. This radiation originates from radiative recombination. This emission is
given by:

"fb =
C1

�2

zini nep
kTe

�
1� exp

�
� hc

�kTe

��
�fb(�; Te ) (7:11)

were C1 = 1:63 � 10�43Wm4K1=2sr�1 and � is the Biberman factor. zi Is the charge number of the
ion. In most cases, we can approximate zini ne with ne

2 .

2. The free-free radiation. This radiation originates from accelerations of charged particles in the
electromagnetical field of other particles. The contribution of the electrons is the most important.
This emission is given by:

"ei
ff =

C1

�2

zini nep
kTe

exp

�
� hc

�kTe

�
�ff (�; Te ) (7:12)

The Biberman factor for free-free emissivity �ff is constant in a good approximation [20]. This
emission gives significant contributions for energies which are smaller or in the order of the average
thermal energy. For T̂e = 0:3 eV, this means that the free-free radiation is only significant for
� > 4500Å .

So, the total background emission is proportional to n e
2 and is given by:

" =
C1

�2

ne
2

p
kTe

�(�; Te ) : (7:13)
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Figure 7.2: A spectrum between � = 3640 Å and � = 3900 Å at axial position (z; y) = (17:2 ; 7:5) .
Plasma settings: argon flow = 2.81 SLM, H2 flow = 0.35 SLM, current through the plasma = 70 A, current
through the magnetic field coils = 250 A. No calibration for the spectral sensitivity of the system is applied.
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The ratio between background radiation and line radiation can be calculated. When we use "line =
npApqh�pq=4� , we get:

"line

"continuum
=

bpgp
p
kTehc

2Apq

8� C1 �(�; Te ) ���
p2q2

q2 � p2
Ry � exp

�
Ry

p2kTe

�
(7.14)

� bp
p
Te exp

�
1
Te

�
(7.15)

So this ratio is independent of n e if bp is independent of ne . This is only true for lines which are in Saha
equilibrium.

At (z; y) = (17:2 ; 7:5) , this ratio turned out to be approximately 20 for the transition H(n = 8 ! n = 2) ,
as is to be expected from equation 7.14.

We assumed that this ratio is constant through the whole plasma. However, the Boltzmann plots of the
positions of positions far from x = 17:2 cm, where the ratio is determined, tends towards a population
inversion of the higher excited levels. This might be an indication that this assumption is not valid there
any more.

Line wavelength (Å ) Gauge factor Background correction

H�(n = 3 ! n = 2) 6562.80 1.35 1
H�(n = 4 ! n = 2) 4861.32 1.50 1
H
(n = 5 ! n = 2) 4340.46 1.31 1
H�(n = 6 ! n = 2) 4101.73 1.33 1
H"(n = 7 ! n = 2) 3970.07 1.00 1
H(n = 8 ! n = 2) 3889.05 0.59 0.95
H(n = 9 ! n = 2) 3835.38 0.62 0.93
H(n = 10 ! n = 2) 3797.90 0.59 0.69
H(n = 11 ! n = 2) 3770.63 0.69 0.75
H(n = 15 ! n = 2) 3711.97 0.69 0.75
H(n = 17 ! n = 2) 3697.15 0.71 0.66

Table 7.1: The gauge factors for each measured Balmer line. The gauge factors reproduce within
approximately 10%. The decay in gauge factors after the H" line is caused by a realignment of the optical
system.

Some results are given in the figures 7.3 to 7.6. For these lines also contour plots were made. The
measurement conditions were: pressure in the arc = 0.27 bar, Iarc = 70 A, argon flow = 2.81 SLM, H2

flow = 0.35 SLM (20% hydrogen atoms when fully dissociated), background pressure = 0.167 mbar. A
magnetic field was applied to confine the plasma. A magnetic field coil was placed around the arc. The
current through the magnetic field coils was 250 A. This results in a magnetic field Bz that varies along
the axis between 0.042 T and 0.00735 T, as is shown in figure 6.3.

Finally, all calculated densities must be multiplied with 5:6 � 10�3 because the measurements were done
with monochromator slits of 250�m while the calibration was done with slits of 50�m to avoid saturation
of the photomultiplier.

We can say that charged particles are confined in a magnetical field if they move spiralized among the
magnetical field lines. This is the case if the cyclotron radius is smaller than the mean free path between
collisions. This condition is most easily fulfilled for electrons, and because the plasma obeys charge
neutrality, ions will also be confined is electrons are. The ratio between the mean free path between
collisions and the cyclotron radius is for electrons given by the electron Hall parameter [14]:

He =
�ei

�e
= 
e�ei = 6:2 � 1021Bz T̂

3=2
e

ne
(7:16)
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For ne = 3 � 1017 m�3 , Te = 0:3 eV and B = 0:033 T, we find: He � 112. So, the plasma is strongly
magnetized. We used in the previous formula the mean free path between collisions of electrons and ions.
It can be shown that this is the dominating interaction. Although the concentration of argon neutrals is
much higher than the concentration of hydrogen ions, the cross section for collisions with argon neutrals
is much lower than the Coulomb cross section for collisions with hydrogen ions. From [21], an estimation

for the cross section for elastic e � H2 scattering can be obtained of 1:5 � 10�20
p
T̂e m2 , resulting in a

rate of � 10�14T̂e m3=s . With this estimate, it can be found that for ne=na > 3 � 10�3T̂
5=2
e � 10�5 for

T̂e = 0:3 eV, Coulomb collisions dominate.
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Figure 7.3: The density of H(n=3), determined from the measurement of the Abel inverted H� line, as a
function of the axial and radial position in the plasma.

The bump in the H(n = 3) density tracks attention. This bump didn’t appear for the other excited levels.
It might be caused by flow characteristics of the plasma: if recirculation of H2 into the vessel causes a
local higher density of Hv�4

2 , the H(n = 3) density will be more affected then the other densities. It could
also be a result of the plasma flow colliding with the back wall of the vessel. If the higher excited levels
(Hn > 4) are populated via H(n = 2) and H(n = 3) , and Te and ne decrease with rising z , the intensity
of the lines H(n � 4 ! n = 2) can decrease and the intensity of H� can increase.

Further, it tracks attention that the intensities decrease before z = 17 cm. This, however, is not a real
decrease in intensity, but the result of a decreasing detection volume: the wall of the vessel lies in the
detection volume.
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Figure 7.4: The density of H(n=3), determined from the measurement of the Abel inverted H� line, as a
function of the axial and radial position in the plasma in a contour plot. The bump after z = 27 cm tracks
attention.
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Figure 7.5: The density of H(n=4), determined from the measurement of the Abel inverted H� line, as a
function of the axial and radial position in the plasma.
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Figure 7.6: The density of H(n=4), determined from the measurement of the Abel inverted H� line, as a
function of the axial and radial position in the plasma in a contour plot.

The electron temperature can be determined from the measurements of the higher levels. We assume that,
the closer a level is to ionization, the more it is in LTE, so the more accurate the Saha equation applies.
Therefore, the relation between electron temperature, level density and energy for these levels is given by:

ln

�
np
gp

�
= Constant+

Ei � Ep

kTe
(7:17)

with the constant equal to:

Constant = ln
h ni ne

2

i
+

3
2

ln

�
h2

2�mekTe

�
: (7:18)

If this relation holds for two levels p and q , we have:

Te =
Eq � Ep

k ln
h
npgq

nqgp

i : (7:19)

This relation could in principle be used to calculate the electron temperature if the intensities of two spectral
lines are known. However, determining Te from 2 lines is a very unreliable method. A small error in
the determination of a density would result in a large error in the resulting temperature. To determine the
electron temperature more accurately, a Boltzmann plot can be made. Here, the energy of the levels is set
against 10 log(np=gp) . The electron temperature can be determined from the slope of a line through the
upper levels, which are supposed to be in Saha equilibrium: 10 log(e) � slope = 1=kTe . An example of a
Boltzmann plot is given in figure 7.7. The slope of a line which is fitted through the highest levels gives
Te .
When we assume the upper levels on the plot in Saha equilibrium, we can extrapolate the line to the
ionization energy and determine the density of a fictional excited level on the ionization limit:

n1
g1

=
ni ne

2

�
h2

2�mekTe

�3=2

(7:20)

We find for n1=g1 � 1010:55 = 3:5 � 1010 m�3 . This results in ne ni = 3:46 � 1037 when we use
Te = 0:3 eV. If we assume a very low ionization degree for argon, we may approximate this with
ne =

p
3:46 � 1039 = 5:8 � 1018 m�3 . This value is too high for the plasma under consideration.

The electron temperature among the axis, determined with Boltzmann plots, is given in figure 7.8.
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Figure 7.7: A Boltzmann plot for axial position z = 18 cm. The electron temperature can be derived from
the slop of a line through the upper levels: 10log(e)�slope:=�1=kTe .
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Figure 7.8: The electron temperature among the axis determined with Boltzmann plots.

7.2 Measurements on a pure hydrogen plasma

The main plasma is investigated with a magnetical field applied to the plasma. Some pictures of a pure
hydrogen plasma are shown in the following figures. This plasma exists in two clearly different modes. In
one mode, the spectrum of the plasma contais mostly of atomic lines, in the other mode, a fully developped
molecular spectrum exists. At certain plasma conditions, depending e.g. on magnetic field and pressure,
there exists a rapid transfer between these modes. One mode contains mainly molecular lines, one mode
contains mainly atomic lines. An explanation of this behaviour is still unknown.
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Figure 7.9: Photographs of the pink colored mode of a hydrogen plasma with a fully developed molecular
spectrum.

Figure 7.10: Photographs of the red colored mode of a hydrogen plasma with mainly atomic lines.



Chapter 8

Conclusions

8.1 Comparison between model and experiment

We have implemented a kinetic model and a first attempt to a flow model has been made. Further, the
spectroscopic setup is functioning and measurements are performed. The absolute calibration needs further
attention. The experimental results however, are not easily comparable with the numerical results because:

1. The experiments were performed with more argon than hydrogen while the model is set up for pure
hydrogen. This was nessacery because a pure hydrogen plasma emitted an undetectable amount of
light in the higher Balmer lines. This can cause deviations because the flow properties of argon differ
a lot from the flow properties of hydrogen. Further, some chemical reactions between argon and
hydrogen might be of any influence. The possible effects of recirculation of the gas flow through
the vessel are neglected. However, most reactions are so fast that a local model will be a good
approximation. Further, if more than 10% H 2 is added, most ions are H+ .

2. The effects of the magnetic field are completely ignored in the program. Because magnetical fields
affect the movements of all charge particles, it will be of influence on the collision and flow processes.
Although the introduction of a magnetic field complicates the formulation of an adequate numerical
model, it is necessary for the measurements. Without a magnetic field, the light emission of the
plasma is so low that it is difficult to resolve spectral lines. Further, is no magnetical field confines
the plasma, the plasma beam expands so quickly that Abel inversion becomes a serious problem
because the measured profiles have a very flat intensity decay.

We see that the predicted overpopulation of H(n = 3) (see figure 4.8 with respect to the Saha equilibrium
density did not appear. This can be caused because the experimental conditions were rather different than
the conditions used in the model or by shortcomings in the model. We can conclude that:

1. More work needs to be done, both experimentally and theoretical. The flow model needs to be
improved and the kinetics of the molecular reactions needs to be studied more carefully.

2. There are 2 main differences between the numerical and the experimental results:

I. There is no overpopulation observed for H(n = 3) . This might indicate that the rate coefficient
for reaction 9 (H+ + H� ! H + H(n = 3)) is chosen too high, or that a larger part of the
produced excited hydrogen atoms flows out to n = 2.

II. The contradictions between the emission spectroscopy measurements and the Langmuir probe
measurements. This is discussed in section 8.2. It could be an indication that the temperature
which follows from the occupation of excited levels is not the same as Te . If this is true, it
implies input in these levels.

3. The occupation of the levels around n = 5 to 8 are much larger than could be expected. This
could happen if there is some input to the higher levels from molecular reactions, e.g. H+ + H� !
H + H(n) , n = 6 or 7.

Further some of the used data about rate coefficients, originating from [10], is under discussion. In
particular, the rate coefficients for reactions 2 and 5 are still a point of discussion. A lower rate coefficient
for reaction 2 would decrease the H� production. The overpopulation of H(n = 3) is mainly determined
by reaction 9. Reactions 4,5 and 7 result in a net flow to H(n = 2) . Because reaction 5 results in the largest
flow and K5 is still under discussion, this is a point that requires further attention.
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8.2 Comparison between the emission spectroscopy measurements and
probe measurements

Some measurements with a Langmuir probe are performed to compare them with the emission spectroscopy
measurements. The results are listed in table 8.1.

Distance from the nozzle Te ne

[cm ] [K ] [m�3]

20 4000 2:2 � 1018

25.5 3530 1:3 � 1018

31 3130 9 � 1017

Table 8.1: The results of the Langmuir probe measurement.
.

We see that there is an acceptable agreement between these measurements and the results of the emission
measurements. The results of Langmuir probe measurements in magnetical fields are questionable if the
electron cyclotron radius becomes smaller than the diameter of the probe. However, the diameter of the
probe wire is 100�m, while the electron cyclotron radius for electrons of 0.3 eV in a field of 0.03 T is
0.06 mm. So the magnetic field does not affect this measurement seriously. The underdetermination of the
electron temperature from the emission measurements could be a combined result of uncertaincies with the
calibration and disturbances of a leak in the vessel. This leak shows up in the nitrogen molecular bands
which appear in the spectrum in figure 7.2. Especially in the wavelength region where all the high lying
hydrogen lines are the spectrum is polluted due to the vacuum leak. Further, some reactions that give input
in the higher excited states are gouverned by the (lower?) heavy particle temperature Th .

8.3 The flow model

The flow model was numerically unstable. Probably the easiest way to avoid this is to make the equations
dimensionless.

8.4 Further recommendations

An extension of the model with states Ar, Ar+ and ArH+ is needed. Further, the properties of the magnetic
field could be implemented. This extended model would more agree with the experimental conditions.

On the experimental side, the background radiation could be measured as a function of the position. After
Abel inversion, a determination of ne is possible.



Appendix A

All reactions in a hydrogen plasma
according to [10]

1. Electron collisions with H 2 , H+

2
and H+

3

Reaction mechanism Rate coefficient [m 3 /s]
0.3 eV 0.5 eV 1 eV 1.5 eV

e + H2 ! e + 2H(1s) < 10�17
< 10�17

< 10�17 1:5 � 10�15

e + H2 ! e + H(1s) + H(2s) < 10�17
< 10�17

< 10�17 2 � 10�16

e + H2 ! e + H(2p) + H(2s) < 10�17
< 10�17

< 10�17 10�17

e + H2 ! e + H(1s) + H(n = 3) < 10�17
< 10�17

< 10�17 10�17

e + H2 ! 2e + H+
2 < 10�17

< 10�17
< 10�17 8 � 10�16

e + H2 ! 2e + H+ + H(1s) < 10�17
< 10�17

< 10�17 10�17

e + H+
2 ! 2e + 2H+

< 10�17
< 10�17

< 10�17 6 � 10�17

e + H+(0�v�9)
2 ! e + H+ + H(1s) 6 � 10�17 2 � 10�15 2 � 10�14 10�13

e + H+
2 ! e + H+ + H(n = 2) < 10�17

< 10�17
< 10�17 10�14

e + H+(v)

2 ! H(1s) + H(n � 2) 1:2 � 10�13 8 � 10�14 5:5 � 10�14 2 � 10�14

e + H+
3 ! 3H 2 � 10�14 1:6 � 10�14 1:2 � 10�14 2 � 10�14

e + H+
3 ! H2(v > 5) + H(n = 2) 7 � 10�14 5:5 � 10�14 4 � 10�14 2 � 10�14

e + H+
3 ! e + 2H + H+

< 10�17
< 10�17

< 10�17 10�14

e + H(v�4)
2 ! H� +H 2:8 � 10�14 2:8 � 10�14 2 � 10�14 4 � 10�15

2. Proton collisions with H 2 and H+
2

Reaction mechanism Rate coefficient [m 3 /s]
0.3 eV 0.5 eV 1 eV 1.5 eV

H+ + H(j=0)
2 ! H+ + H2(j0) (j0 � 2) 3:5 � 10�15 3:8 � 10�15 4 � 10�15 4 � 10�15

H+ + H(j=1)
2 ! H+ + H2(j0) (j0 � 3) 1:8 � 10�15 2 � 10�15 2:8 � 10�15 3:9 � 10�15

H+
+ H(v=0)

2 ! H+
+ H2(j0) (v > 0) < 10�17 2 � 10�17 8 � 10�17 1:8 � 10�15

H+ + H2 ! H(1s) + H+
2 < 10�17 10�17 3:8 � 10�17 9 � 10�17

H+ + H2 ! H+ + H2(v � 9) + e < 10�17
< 10�17

< 10�17
< 10�17

H+ + H+
2 ! H(1s) + 2H+

< 10�17
< 10�17

< 10�17
< 10�17

H+
2 + H(1s) ! H+ +H+H(1s) < 10�17

< 10�17
< 10�17

< 10�17

H+
2 + H2 ! 2H+

2 +e < 10�17
< 10�17

< 10�17
< 10�17

H+
2 + H2 ! H+

3 +H 1:1 � 10�15 10�15 8 � 10�16 2:8 � 10�16

3. Collisions with H�

Reaction mechanism Rate coefficient [m 3 /s]
0.3 eV 0.5 eV 1 eV 1.5 eV

e + H� ! 2e+H(1s) 5 � 10�16 2:5 � 10�15 1:5 � 10�14 3:3 � 10�13

e + H� ! 3e+H+
< 10�17

< 10�17
< 10�17 1:5 � 10�16

H+ + H� ! e+H+H+
< 10�17

< 10�17
< 10�17

< 10�17

H+ + H� ! H(n=2)+H(1s) 1:3 � 10�15 1:5 � 10�15 2 � 10�15 5 � 10�15

H+ + H� ! H(n=3)+H(1s) 4:1 � 10�14 4 � 10�14 4 � 10�14 3:7 � 10�14

H + H� ! 2H+e 5 � 10�16 7 � 10�16 10�15 3 � 10�15

H + H� ! H 2 +e 1:8 � 10�15 1:8 � 10�15 1:8 � 10�15 2:4 � 10�15
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4. Collisions between H+ and H

Reaction mechanism Rate coefficient [m 3 /s]
0.3 eV 0.5 eV 1 eV 1.5 eV

H+
+ H(1s) ! H+ +H(2p) < 10�17

< 10�17
< 10�17

< 10�17

H+ + H(1s) ! H+ +H(2s) < 10�17
< 10�17

< 10�17
< 10�17

H+
+ H(2s) ! H+ +H(2p) 1:8 � 10�11 2:8 � 10�11 4:5 � 10�11 10�10

H+ + H(1s) ! H+ + H(n � 3)
H+ + H(n � 2) ! H+ + H(m � n)

H+ + H(1s) ! 2H+ +e < 10�17
< 10�17

< 10�17
< 10�17

H+
+ H(n � 2) ! 2H+ +e

We see that there is a strong collisional coupling between the H(2s) and the H(2p) level. Because the
transition H(2s) ! H(1s) is not permitted in first order, this means that the decay from H(2s) to H(1s) is

still possible via H(2s)
e
! H(2p)

h�
! H(1s) .



Appendix B

The program listings

B.1 Unit Atom def

Unit Atom_def;

Interface

Const
ion_factor=1;
Max_Levels=20;
Max_Transitions=100;
N_cond=10;
N_K=11;
h=6.6262e-34;
kB=1.381e-23;
ee=1.6022e-19;
me=9.11e-31;
m1=1.673e-27;

Type
float = double;
int_level_arr= array[1..Max_Levels] of integer;
condition_arr= array[1..N_cond] of float;
float_level_arr = array[1..Max_Levels] of float;
float_level_arr_2dim = array[1..Max_Levels,1..Max_Levels] of float;
int_transition_arr = array[1..Max_Transitions] of integer;
arr_col = array[1..Max_Transitions] of float ;

Type atomic_data = record
n,plus,m,z,mu,N_rad_trans,N_Vriens_transitions,
N_cut_off_levels,N_cut_off_connections : integer;
g,g_cut_off : int_level_arr;
init_rad_lev,final_rad_lev,init_Vr_lev,final_Vr_lev,
g_Vr_sub_tot,init_cut_off_conn_lev,
final_cut_off_conn_lev,g_cut_off_conn_sub_tot: int_transition_arr;
E,E_cut_off : float_level_arr;
A_val,A_Vriens : arr_col;
Kmol : array[1..N_K,1..3] of float;

end;

Implementation
end.
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B.2 Unit Read H

Unit Read_H;

Interface

Uses Crt,Atom_def;

Procedure read_atomic_data(var element_data :atomic_data);

Implementation

Procedure read_atomic_data(var element_data :atomic_data);

Var p: integer;
f: text;

begin
with element_data do
begin;
assign(f,’h.dat’);
reset(f);
readln(f,n); write(’ Aantal atomaire niveaus: ’,n);
readln(f,plus); writeln(’ Ion niveau: ’,plus);
readln(f,m); write(’ Aantal moleculaire toestanden: ’,m);
readln(f,z); writeln(’ Ladingsgetal: ’,z);
writeln;
readln(f);
for p:=1 to n do readln(f,E[p]);
readln(f,E[plus]);
readln(f);
for p:=1 to (plus+m) do readln(f,g[p]);
readln(f);
readln(f,N_Rad_Trans);
writeln(’N_Rad_Trans: ’,N_Rad_Trans);

for p:=1 to N_Rad_Trans do
begin

readln(f,init_rad_lev[p],final_rad_lev[p],A_val[p]);
end;

readln(f);
readln(f,N_Vriens_Transitions);

writeln(’N_Vriens_Transitions: ’,N_Vriens_Transitions);

for p:=1 to N_Vriens_Transitions do
readln(f,Init_vr_lev[p],final_vr_lev[p],A_Vriens[p],g_vr_sub_tot[p]);
readln(f);

for p:=1 to N_K do readln(f,Kmol[p,1],Kmol[p,2],Kmol[p,3]);
readln(f);

readln(f,N_cut_off_levels);
for p:=1 to N_cut_off_levels do readln(f,E_cut_off[p],g_cut_off[p]);
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readln(f,N_cut_off_connections);
for p:=1 to N_cut_off_connections do
readln(f,init_cut_off_conn_lev[p],final_cut_off_conn_lev[p],

g_cut_off_conn_sub_tot[p]);
mu:= 1; { mass units }
close(f);
end;
end;
end.

B.3 Unit New Solv

Unit New_Solv;

Interface
Uses Atom_def, Matrix, Crt;

Procedure Calc_Stat_cond(n,plus :integer;
gamma :float;
Total_Matrix : float_level_arr_2dim;

Var pop:float_level_arr);

Procedure Calc_Stat(n,m,plus : integer;
Total_Matrix : float_level_arr_2dim;

Var pop,n_plus,n_1,n_H2 : float_level_arr;
Var alfa_CR,S_CR : float;

nH2,n1,Nplus,ne : float);

Function power(a,b :float): float;

Function Saha_dens(g_p,g_ion: integer; E_ion,E_p,Te,ne,ni: float): float;

Procedure svevriens(Var excit,deexcit: float;
E_ion,E_p,E_q: float;
gsubt,g_p,g_q: integer; Te,A_val:float);

Procedure Calc_Matrix(element_data : atomic_data;
ne,nplus,n1,nH2,Te,Th,Tvib:float;

Var deelv: float;
Var Total_Matrix,K_rate,A_mat : float_level_arr_2dim;
Var K_mol,K_mol_rev : K_arr;
Var exponent,nHmin,nH3plus,

gamma1,gamma2,gamma3:float);

implementation

{ Berekening van gehele en gebroken machten }
Function power(a,b :float): float;
Var c,d : float;

i,macht: integer;
begin

if a=0 then power:=1
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else if (b-round(b))= 0 then
begin

c:=a;
d:=a;
macht:=round(b)-1;
for i:=1 to macht do d:=d*c;
power:=d;
end

else power:=exp(b*ln(a));
end;

function Saha_dens(g_p,g_ion: integer; E_ion,E_p,Te,ne,ni: float): float;
begin
Saha_dens:=(ni*g_p/(2*g_ion)*3.32E-28*ne/power(Te,1.5))

*exp((E_ion-E_p)/Te);
end;

{SE FORMULAE OF VRIENS AND SMEETS FOR THE CALCULATION OF RATECOEFFICIENTS}
Procedure svevriens(Var excit,deexcit :float ;

E_ion,E_p,E_q : float;
gsubt,g_p,g_q : integer ; Te,A_val:float);

Var p,q,Y,K_pY,b_p,B_pq,f_pq,A_pq,Delta_pq,Gamma_pq,dE,dummy :float;
begin
p:=sqrt(13.6/(E_ion-E_p));
q:=sqrt(13.6/(E_ion-E_q));
dE:=E_q-E_p;
b_p:=(1.4*ln(p)-0.7-0.51/p+1.16/sqr(p)-0.55/power(p,3))/p;
B_pq:=(739.84*g_q*(1+ (4*(E_ion-E_p))/(3*dE)+

(b_p*sqr(E_ion-E_p))/sqr(dE)))/(gsubt*power(q,3)*sqr(dE));

{calculate oscillator strenght; in case the A_val given to the procedure}
{equal zero, take a hydrogen approximation }
if A_val<>0 then

f_pq:=(2.306E-8*A_val*g_q)/(g_p*sqr(dE))
else

begin
Y:=abs(dE/(E_ion-E_p));
if p<=1.5 then K_pY:= 1.133 - 0.4059/Y + 0.07014/sqr(Y)

else if p<3 then K_pY:=1.0785 - 0.2319/Y + 0.02947/sqr(Y)
else {p>=3} K_pY:=0.9935+0.2328/p-0.1296/sqr(p)

- (0.6282-0.5598/p+0.5299/sqr(p))/(p*Y)
+ (0.3887-1.181/p+1.470/sqr(p))/sqr(p*Y);

f_pq:=1.960*K_pY/(power(p,5)*power(q,3)*power((1/sqr(p)-1/sqr(q)),3));
if (f_pq>1) then f_pq:=1;
end;

A_pq:=(27.2/dE)*f_pq;

dummy:=B_pq/A_pq;
if dummy > 69 then Delta_pq:=0 else Delta_pq:=exp(-dummy);
Delta_pq:=Delta_pq + 0.06*sqr(q-p)/(q*sqr(p));

Gamma_pq:=13.6*ln(1+power(p,3)*Te/13.6)*(3+11*sqr((q-p)/p))/
(6+1.6*q*(q-p)+0.3/sqr(q-p)+0.8*power(q,1.5)*abs(q-p-0.6)/sqrt(abs(q-p)));
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Excit:=1.6E-13*sqrt(Te)*exp(-dE/Te)*A_pq*
(ln(0.3*Te/13.6+Delta_pq)+dummy)/(Te+Gamma_pq);

Deexcit:=excit*g_p/g_q*exp(dE/Te);
end {procedure svevriens};

Procedure Calc_Matrix(element_data : atomic_data;
ne,nplus,n1,nH2,Te,Th,Tvib:float;

Var deelv: float;
Var Total_Matrix,K_rate,A_mat : float_level_arr_2dim;
Var K_mol,K_mol_rev : K_arr;
Var exponent,nHmin,nH3plus,gamma1,gamma2,gamma3:float);

Var
p,q,ii,v : integer;
pef,eps,beta,excit,deexcit,som,mm,ZZ : float;
K_N_Nplus1 : float_level_arr_2dim;

{* Approximation of exponential integral. This function *}
{* is used for the calculation of radiation combination *}

Function meimx(E_lower,E_upper,Te:real):real;
Var

x2,dummy : real;
begin

x2:= (E_upper-E_lower)/Te;
if x2 < 2.5 then
begin

dummy:=-ln(x2)-0.57721566+0.99999193*x2-0.24991055*sqr(x2);
dummy:=dummy+0.05519968*power(x2,3)-0.00976004*power(x2,4);
meimx:=dummy+0.00107857*power(x2,5)

end
else meimx:=exp(-x2)/x2*(1-1/x2+2/sqr(x2));

end {function meimx};

begin
with element_data do begin
{*********************************************************}
{* Determination of Excitation - Deexcitation *}
{* Rate Coefficients K_rate[p,q] *}
{*********************************************************}

for p:=1 to plus do for q:=1 to plus do K_rate[p,q]:=0;
for ii:=1 to N_Vriens_transitions do
begin

p:=init_Vr_lev[ii]; q:=final_Vr_lev[ii];
svevriens(K_rate[p,q],K_rate[q,p],E[plus],E[p],E[q],g_Vr_sub_tot[ii],

g[p],g[q],Te,A_Vriens[ii]);
end;

{********************************************************************}
{Determination of Ionization Rate Coefficients ebi[i] : Ionization of}
{the Groundlevel : Straight Line for the Excited Levels we use : }
{Vriens & Smeets : Phys Rev A vol 22 no 3 sept.1980. }
{********************************************************************}
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for p:=1 to n do
begin

eps:=(E[plus]-E[p])/Te;
K_rate[p,plus]:=((9.56E-12/power(Te,1.5)*exp(-eps))/(power(eps,2.33)

+4.38*power(eps,1.72)+1.32*eps));
end;

{Cut-off Procedure for the Highest Levels; PHD J.A.M. van der Mullen}
for p:=1 to plus do for q:=1 to plus do K_N_Nplus1[q,p] := 0;
for ii:=1 to N_cut_off_connections do

begin
pef:=sqrt((13.6*sqr(z+1))/(E[plus]-E[init_cut_off_conn_lev[ii]]));
beta:=1-power(pef/(pef+1),exponent);
svevriens(excit,deexcit,e[plus],E[init_cut_off_conn_lev[ii]],

E_cut_off[final_cut_off_conn_lev[ii]],
g_cut_off[final_cut_off_conn_lev[ii]],
g[init_cut_off_conn_lev[ii]],
g_cut_off[final_cut_off_conn_lev[ii]],Te,10);

K_N_Nplus1[init_cut_off_conn_lev[ii],final_cut_off_conn_lev[ii]]:=
excit*beta;

end;
for ii := 1 to N_cut_off_connections do
begin
K_rate[init_cut_off_conn_lev[ii],plus]:=

k_rate[init_cut_off_conn_lev[ii],plus] +
K_N_Nplus1[init_cut_off_conn_lev[ii],final_cut_off_conn_lev[ii]];

end;

{** Three Particle Recombination Determined with Detailed Balance ***}
{******** be aware that K_rate[p,+]*n[p]= n[+]*K_rate[+,p] *********}
for p:=1 to n do
K_rate[plus,p]:=Saha_dens(g[p],g[plus],E[plus],E[p],Te,ne,1)*K_rate[p,plus];

{*********************** Radiation recombination ********************}
for p:=1 to n do

K_rate[plus,p]:=K_rate[plus,p]+
1.31E-18*g[p]/g[plus]*{gam[i]}3*exp((E[plus]-E[p])/Te)*
power(((E[plus]-E[p])/13.6),2.5)/power(Te,1.5)*meimx(E[p],E[plus],Te);

{*********** Determination of Molecular Rate Coefficients ***********}
if (Te < 0.3) then
begin

writeln(’Te < 0.3 eV. Extrapolating from 0.3 eV values.’);
for p:=1 to N_K do K_mol[p]:=Kmol[p,1]-5*(Kmol[p,1]-Kmol[p,2])*(Te-0.3);
for p:=1 to N_K do if K_mol[p]<0 then K_mol[p]:=0;

end;
if (Te > 1) then
begin

writeln(’Te > 1 eV. Extrapolating from 1 eV values.’);
for p:=1 to N_K do K_mol[p]:=Kmol[p,2]-2*(Kmol[p,2]-Kmol[p,3])*(Te-0.5);
for p:=1 to N_K do if K_mol[p]<0 then K_mol[p]:=0;

end;

if ((0.3 <= Te) and (Te < 0.5)) then
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begin
for p:=1 to N_K do K_mol[p]:=Kmol[p,1]-5*(Kmol[p,1]-Kmol[p,2])*(Te-0.3);

end;
if ((0.5 <= Te) and (Te <= 1)) then
begin

for p:=1 to N_K do K_mol[p]:=Kmol[p,2]-2*(Kmol[p,2]-Kmol[p,3])*(Te-0.5);
end;

{********** Determination of Vibrational Distribution ****************}
ZZ:=0; { State sum }
deelv:=0; { fraction of H_2 molecules with v\geq4 }
for v:=0 to 14 do ZZ:=ZZ+exp(-0.545*(v-0.0244*v*v)/Tvib);
for v:=4 to 14 do deelv:=deelv+exp(-0.545*(v-0.0244*v*v)/Tvib);
deelv:=deelv/ZZ;

{******** Determination of Reverse Molecular Rate Coefficients ********}
mm:=exp(1.5*ln(me/m1));
K_mol_rev[1]:=K_mol[1]*(g[plus]*(g[plus+4]-4)/(g[1]*g[plus+1]))

*exp(-0.063/Th);
K_mol_rev[2]:=K_mol[2]*(g[plus+4]/g[plus+3])*mm*2*sqrt(2)*exp(1.836/Th);
K_mol_rev[3]:=K_mol[3]*(4/sqrt(27))*(g[plus+1]*g[plus+4]/g[plus+2])

*exp(-1.92/Th);
K_mol_rev[4]:=K_mol[4]*(g[plus+1]/2*sqrt(2))*mm*exp(-0.75/Te);
K_mol_rev[5]:=K_mol[5]*(sqrt(54)/16)*(g[plus+2]/(g[plus+4]-4))*mm

*exp(3.164/Th);
K_mol_rev[6]:=K_mol[6]*(sqrt(27)/4)*g[plus+2]*mm

*power(((h*h)/(2*pi*m1*ee*Th)),1.5)*exp(-4.546/Th);
K_mol_rev[7]:=K_mol[7]*(g[plus+3]/16)*exp(-2.649/Th);
K_mol_rev[8]:=K_mol[8]*0.25*g[plus+3]*power(((h*h)/(2*pi*me*ee*Te)),1.5)

*exp(0.75/Te);
K_mol_rev[9]:=K_mol[9]*(g[plus+3]/36)*exp(-0.761/Th);
K_mol_rev[10]:=K_mol[10]*0.25*g[plus+3]*power(((h*h)/(2*pi*me*ee*Te)),1.5)

*exp(0.75/Te);
K_mol_rev[11]:=K_mol[11]*(sqrt(27)/8)

*(g[plus+2]*g[plus+3]/(g[plus+4]*g[plus+4]))*exp(-12.748/Th);

{***************** Preparation of Radiation Matrix ******************}
for p:=1 to plus do for q:=1 to plus do A_mat[p,q]:=0;
for ii:=1 to N_rad_trans do

A_mat[init_rad_lev[ii],final_rad_lev[ii]]:=A_val[ii];

{********************************************************************}
{* Construction of Linear System and *}
{* Extension with Molecular Terms. *}
{********************************************************************}
{* Atomic terms *}
for p:=1 to (plus+m) do for q:=1 to (plus+m) do Total_Matrix[p,q]:=0;
for p:=1 to plus do
begin
for q:=1 to plus do
if p<>q then
begin

Total_Matrix[p,p]:=Total_Matrix[p,p]-ne*K_rate[p,q]-A_mat[p,q];
Total_Matrix[p,q]:=ne*K_rate[q,p]+A_mat[q,p];
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end;
end;

{* Addition of moleculair terms *}
{* They include the assumption nˆ* = n_2 *}

{* Terms at the right-hand side *}
Total_Matrix[plus+2,1]:=n1*n1*K_mol_rev[6];
Total_Matrix[plus+3,1]:=ne*ne*K_mol_rev[8]+n1*ne*K_mol_rev[10];
Total_Matrix[plus+1,plus+m]:=nplus*deelv*K_mol[1];
Total_Matrix[plus+2,plus+m]:=nH2*K_mol_rev[11];
Total_Matrix[plus+3,plus+m]:=ne*deelv*K_mol[2]+nH2*K_mol_rev[11];

{* terms at the left-hand side *}
Total_Matrix[2,2]:=Total_Matrix[2,2]-n1*(K_mol_rev[4]+K_mol_rev[7])-nH2

*deelv*K_mol_rev[5];
Total_Matrix[3,3]:=Total_Matrix[3,3]-n1*K_mol_rev[9];
Total_Matrix[plus+1,2]:=n1*K_mol_rev[4];
Total_Matrix[plus+2,2]:=nH2*deelv*K_mol_rev[5];
Total_Matrix[plus+3,2]:=n1*K_mol_rev[7];
Total_Matrix[2,plus+1]:=ne*K_mol[4];
Total_Matrix[2,plus+2]:=ne*K_mol[5];
Total_Matrix[2,plus+3]:=nplus*K_mol[7];
Total_Matrix[3,plus+3]:=nplus*K_mol[9];
Total_Matrix[plus+1,plus+1]:=-n1*K_mol_rev[1]-nH2*K_mol[3]-ne*K_mol[4]

-gamma1;
Total_Matrix[plus+2,plus+1]:=nH2*K_mol[3];
Total_Matrix[plus+1,plus+2]:=n1*K_mol_rev[3];
Total_Matrix[plus+2,plus+2]:=-n1*K_mol_rev[3]-ne*(K_mol[5]+K_mol[6])-

nHmin*K_mol[11]-gamma2;
Total_Matrix[plus+3,plus+3]:=-n1*K_mol_rev[2]-ne*K_mol[8]

-nplus*(K_mol[7]+K_mol[9])
-n1*K_mol[10]-nH3plus*K_mol[11]-gamma3;

end;
end; {procedure calc_matrix}

Procedure Calc_Stat_cond(n,plus : integer;
gamma : float;
Total_Matrix: float_level_arr_2dim;

Var pop: float_level_arr);
{procedure Calc_Stat_cond berekend de stationaire conditie voor gegeven}
{CR-matrix (Total_Matrix) en gegeven \gamma_tˆ+ }
{de totale dichtheid wordt genormeerd op 1 }
Var p,q : integer;

som : float;
data,inv: TNmatrix;
Error : byte;

begin
{* bepaal de inverse van Total_Matrix *}
for p:=1 to plus do for q:=1 to plus do data[p,q]:=Total_Matrix[p,q];
for q:=1 to n do data[plus,q]:=0;
data[plus,plus]:=1;
data[1,plus]:=data[1,plus]+gamma;
Inverse(plus,Data,inv,Error);
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som:=0;
for p:=1 to plus do begin pop[p]:=inv[p,plus]; som:=som + pop[p]; end;
for p:=1 to plus do pop[p]:=pop[p]/som;
end {procedure calc_stat_cond};

Procedure Calc_Stat(n,m,plus : integer;
Total_Matrix : float_level_arr_2dim;

Var pop,n_plus,n_1,n_H2: float_level_arr;
Var alfa_CR,S_CR : float;

nH2,n1,Nplus,ne : float);
Var p,q : integer;

data,inv:TNmatrix;
error :byte;

begin
{Calc_stat berekend de dichtheden van de aangeslagen niveaus bij gegeven}
{n_1 en n_+ en CR-matrix; gamma_tˆ+ hoeft dus niet meegegeven te worden }
{bovendien worden S_CR en alfa_CR bepaald }

{******* bepaal inverse van Total_Matrix bij gegeven n_1, n_+ en nH2. **}
for p:=1 to (plus+m) do for q:=1 to (plus+m) do

data[p,q]:=Total_Matrix[p,q];
for q:=2 to (plus+m) do data[1,q]:=0; data[1,1]:=1;
for q:=1 to (plus+m) do data[plus,q]:=0; data[plus,plus]:=1;
for q:=1 to (plus+m) do data[plus+m,q]:=0; data[plus+m,plus+m]:=1;
Inverse(plus+m,Data,inv,Error);

{*********** Calculation pop[p], n_plus[p], n_1[p] en n_H2[p] **********}
pop[1]:=n1;
pop[plus]:=nplus;
pop[plus+m]:=nH2;
for p:=2 to (plus+m) do
begin

n_1[p]:=inv[p,1]*pop[1];
n_plus[p]:=inv[p,plus]*pop[plus];
n_H2[p]:=inv[p,plus+m]*pop[plus+m];
pop[p]:=n_1[p]+n_plus[p]+n_H2[p];

end;

{******** Calculation alfa_CR en S_CR ******************}
alfa_CR:=0;S_CR:=0;
for p:=2 to n do
begin

alfa_CR:=alfa_CR + n_plus[p]*Total_Matrix[1,p];
S_CR:=S_CR - n_1[p]*Total_Matrix[1,p];

end;
if pop[plus]>0 then

alfa_CR:=(pop[plus]*Total_Matrix[1,plus] + alfa_CR)/(ne*pop[plus])
else alfa_CR:=0;;

if pop[1]>0 then
S_CR:= - Total_Matrix[1,1]/ne + S_CR/(ne*pop[1])
else S_CR:=0;

end {procedure calc_stat};

end.
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end.

B.4 Main program

Program H1;
{$IFDEF CPU87} {$N+} {$ELSE} {$N-} {$ENDIF}
Uses Atom_def, Read_H, New_Solv, Crt;

Var
H_dat : atomic_data;
ne,ni,exponent,Te,Th,Tvib,gamma0,gamma1,gamma2,gamma3,n1,
nplus,nH2,alfa_CR,S_CR,sum,deelv,nHmin,nH3plus: float;
f : text;
pop,n_plus,n_1,n_H2,nS : float_level_arr;
K_rate,Total_Matrix,A_mat : float_level_arr_2dim;
K_mol,K_mol_rev : K_arr;
l : integer;

Procedure Calculation;
begin
with H_dat do
begin

writeln(’ Calculating CR matrix.’);
Calc_Matrix(H_dat,ne,nplus,n1,nH2,Te,Th,Tvib,deelv,Total_Matrix,K_rate,

A_mat,K_mol,K_mol_rev,exponent,nHmin,nH3plus,gamma1,gamma2,gamma3);
writeln(’ Calculating stationary condition densities.’);
Calc_stat(n,m,plus,Total_Matrix,pop,n_plus,n_1,n_H2,alfa_CR,S_CR,

nH2,n1,nplus,ne);
end;
end; {Calculation}

Procedure Iteration;
Var relax,test: float;

s : integer;
begin
with H_dat do
begin

relax:=1;
test:=relax*(ne+pop[plus+3]-pop[plus+1]-pop[plus+2])+(1-relax)*nplus;
while test < 1e3 do
begin

test:=relax*(ne+pop[plus+3]-pop[plus+1]-pop[plus+2])+(1-relax)*nplus;
relax:=relax/2;
writeln(’Decreasing relaxation factor; relax = ’,relax);

end;
write(’Relaxatiefactor = ’,relax:2:6,’ ’);
s:=0;
repeat

writeln;
s:=s+1; writeln(s,’th iteration step. ’);
nHmin:=pop[plus+3];
nH3plus:=pop[plus+2];
nplus:=relax*(ne+pop[plus+3]-pop[plus+1]-pop[plus+2])+(1-relax)*nplus;
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Calculation;
until (Abs(nplus+pop[plus+1]+pop[plus+2]-ne-pop[plus+3])<1e4) and

(Abs(nHmin-pop[plus+3])<1e3) and
(Abs(nH3plus-pop[plus+2])<1e3) or (s>100);

end;
writeln(s,’ iteration steps used.’);
end; {Iteration}

begin {main}
ClrScr;
gamma0:=0; { /s }
gamma3:=0; { /s }
gamma1:=gamma3/sqrt(2); { /s }
gamma2:=gamma3/sqrt(3); { /s }
Te:=0.26; { kTe in eV }
Th:=Te; { eV }
Tvib:=0.3; { eV }
ne:=3e17; { mˆ-3 }
n1:=1e20; { mˆ-3 }
nH2:=3e21; { mˆ-3 }
nplus:=ne; { mˆ-3 }
exponent:=6; { factor in schaalwet r_1(p)=b_0 p_effˆ(-exponent) }
nH3plus:=1e16; { mˆ-3 }
nHmin:=1e16; { mˆ-3 }

write(’ Reading Hydrogen data.....’);
read_atomic_data(H_dat);
writeln(’ Ready.’);

Calculation;
Iteration;

writeln(’Calculation completed. Writing data in file res.dat.’);
assign(f,’res.dat’); rewrite(f);
with H_dat do
begin
writeln(f,’Te = ’,Te:0:2,’ eV, ne =’,ne:10,’ nH2 = ’,nH2:10);
writeln(f,’Th = ’,Th:0:2,’ eV, n1 =’,n1:10);
writeln(f);
writeln(f,’f(v\geq4) = ’,deelv);
writeln(f);
for l:=1 to (plus-1) do
writeln(f,’n_’,l:2,’/g_’,l:2,’ =’,pop[l]/g[l]:12,’ n_’,l:2,’ =’,pop[l]:12);

writeln(f,’n_+ /g_+ =’,nplus/g[plus]:12,’ n_ + =’,nplus:12);
writeln(f);
writeln(f,’n_H_2ˆ+/g =’,pop[plus+1]/g[plus+1]:12,’ n_H_2ˆ+=’,pop[plus+1]:12);
writeln(f,’n_H_3ˆ+/g =’,pop[plus+2]/g[plus+2]:12,’ n_H_3ˆ+=’,pop[plus+2]:12);
writeln(f,’n_Hˆ-/g =’,pop[plus+3]/g[plus+3]:12,’ n_Hˆ- =’,pop[plus+3]:12);
writeln(f,’n_H_2/g =’,nH2/g[plus+4]:12,’ n_H_2 =’,nH2:12);
writeln(f);
sum:=0;
for l:=1 to (plus+m) do sum:=sum+pop[l];
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writeln(f,’The total particle density sum(n) is: ’,sum:12);
writeln(f,’The total charge density is: ’

,nplus+pop[plus+1]+pop[plus+2]-ne-pop[plus+3]:12,’ e’);
writeln(f);
writeln(f,’Recombination coefficient: a_CR = ’,alfa_CR:12,’mˆ-3 sˆ-1’);
writeln(f,’Ionisation coefficient: S_CR = ’,S_CR:12,’mˆ-3 sˆ-1’);
writeln(f);
writeln(f,’Theoretical Saha-jump:’,(2/ne)*3E27*exp(1.5*ln(Te)));
writeln(f,’Calculated Saha-jump:’,(pop[plus]/g[plus])/(pop[plus-1]/g[plus-1]));
writeln(f);
for l:=1 to N_K do writeln(f,’K_[’,l:2,’] =’,K_mol[l]:12,’ K_rev[’,l:2,’] =’

,K_mol_rev[l]:12);
writeln(f);
writeln(f,’Aantal reacties A_[k]:’);
writeln(f,’A_[ 1] =’,deelv*pop[plus+m]*pop[plus]*K_mol[1]:12,

’; A_rev[ 1] =’,pop[plus+1]*n1*K_mol_rev[1]:12);
writeln(f,’A_[ 2] =’,deelv*pop[plus+m]*ne*K_mol[2]:12,

’; A_rev[ 2] =’,pop[plus+3]*n1*K_mol_rev[2]:12);
writeln(f,’A_[ 3] =’,pop[plus+1]*pop[plus+m]*K_mol[3]:12,

’; A_rev[ 3] =’,n1*pop[plus+2]*K_mol_rev[3]:12);
writeln(f,’A_[ 4] =’,pop[plus+1]*ne*K_mol[4]:12,

’; A_rev[ 4] =’,pop[2]*n1*K_mol_rev[4]:12);
writeln(f,’A_[ 5] =’,pop[plus+2]*ne*K_mol[5]:12,

’; A_rev[ 5] =’,deelv*pop[plus+m]*pop[2]*K_mol_rev[5]:12);
writeln(f,’A_[ 6] =’,pop[plus+2]*ne*K_mol[6]:12,

’; A_rev[ 6] =’,n1*n1*n1*K_mol_rev[6]:12);
writeln(f,’A_[ 7] =’,pop[plus]*pop[plus+3]*K_mol[7]:12,

’; A_rev[ 7] =’,n1*pop[2]*K_mol_rev[7]:12);
writeln(f,’A_[ 8] =’,pop[plus+3]*ne*K_mol[8]:12,

’; A_rev[ 8] =’,n1*ne*ne*K_mol_rev[8]:12);
writeln(f,’A_[ 9] =’,pop[plus]*pop[plus+3]*K_m

’; A_rev[ 9] =’,n1*pop[3]*K_mol_rev[9]:12);
writeln(f,’A_[10] =’,pop[plus+3]*n1*K_mol[10]:12,

’; A_rev[10] =’,n1*n1*ne*K_mol_rev[10]:12);
writeln(f,’A_[11] =’,pop[plus+3]*pop[plus+2]*K_mol[11]:12,

’; A_rev[11] =’,pop[plus+m]*pop[plus+m]*K_mol_rev[11]:12);
writeln(f);

{ Calculation of the coeficients b=n/nˆS and \delta b=b-1. }
{ array nS[p] will be filled with the calculated Saha densities. }

for l:=1 to plus-1 do
nS[l]:=saha_dens(g[l],g[plus],E[plus],E[l],Te,ne,nplus);

for l:=1 to plus-1 do
writeln(f,’b_’,l:2,’ = ’,pop[l]/nS[l],’ db_’,l:2,’ = ’,pop[l]/nS[l]-1);

end;
close(f);
writeln;
writeln(’Ready.’);

end.
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The listings of the flow model

C.1 Runge-Kutta integration

This is the program that contains a fourth order Runge-Kutta integration. We start with a differential
equation

dy

dx
= f(x; y) with y(x0) = y0 (C:1)

with y0 the start value. yn+1 follows from:

yn+1 = yn + hf(�n; y(�n)) : (C:2)

where h is the step size and �n 2 fxn; xn+1g . The problem is that both �n and y(�n) are unknown. Now,
we take some “measurements” with various � ’s from fxn; xn+1g . With the resulting value of yn+1 ’s we
calculate the final value of yn+1 . With a 4th order Runge-Kutta method this becomes:

yn+1 = yn +
1
6 k1 +

1
3 k2 +

1
3 k3 +

1
6 k4 +O(h

5) : (C:3)

with

k1 = hf(xn; yn) (C.4)

k2 = hf(xn +
1
2 h; yn +

1
2 k1) (C.5)

k3 = hf(xn +
1
2 h; yn +

1
2 k2) (C.6)

k4 = hf(xn + h; yn + k3) (C.7)

with h the internal step size.

C.2 Discretisation error

When we discretize a quantity F with the previous method, the following equation holds [18]:

F = G(h) + R(h) : (C:8)

Here, G(h) is the approximation for F with step size h . R(h) is the discretization error, and can be
represented with the following power series:

R(h) =
1X

m=1

cmh
m
: (C:9)

If the discretization error is of order p , then we have cm = 08m < p , cp 6= 0, so R(h) =
1P

m=p

cmh
m .

If we halve the step size, we have

F = G(h) + R(h) = G( 1
2 h) +R( 1

2 h) : (C:10)

If jcp+1j � jcpj it can approximately be said that R(h) = 2pR( 1
2 h) . When we substitute this in equation

C.10, we receive

R( 1
2 h) =

1
2p � 1

(G( 1
2 h)� G(h)) : (C:11)

66
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Now, we can estimate the error in G . This requires, however, that jcp+1j � jcpj . Consider quotient of the
following differentiations:

G( 1
2 h) �G(h)

G( 1
4 h)� G( 1

2 h)
=

R(h)� R( 1
2 h)

R( 1
2 h) �R( 1

4 h)
= 2p

cp + c
�

p+1h+ � � �

cp +
1
2 c
�

p+1h+ � � �
(C:12)

with

c
�

p+1 =
2p+1

2(2p � 1)
cp+1

so c
�

p+1 has the same order of magnitude as cp+1 . If the left-hand side of equation C.12 is close to 2p ,
then the condition jcp+1j � jcpj holds and equation C.11 is a good estimation of the discretization error.

It turned out, however, that the model was numerically unstable. The reason of this instabillity in unknown.

C.3 Unit RK4 N.INC

This is the unit in which the 4th order Runge-Kutta integration is implemented.

Procedure rk4_n(n:integer; Var x:float; Var y:TNvector;
d:float; Var h:float);

{The function to be integrated is rechterlid(x,y,i)}

Var v, k1, k2, k3, k4 : TNvector;
H2, U : float;
i,j, internal_steps: integer;

begin
internal_steps:=round(abs(d/h)); {number of internal steps}
for j:=1 to internal_steps do
begin

gotoXY(whereX,18);
write(chr(205))

end;
gotoXY(1,18);
U:=x;
H2:=h/2;
for j:=1 to internal_steps do
begin

gotoXY(whereX,18); write(chr(254));
for i:=1 to N do
begin
v[i]:=y[i];
k1[i]:=h*rechterlid(x,y,i);

end;
x:=x+H2;
for i:=1 to n do y[i]:=v[i]+k1[i]/2;
for i:=1 to n do k2[i]:=h*rechterlid(x,y,i);
for i:=1 to n do y[i]:=v[i]+k2[i]/2;
for i:=1 to n do k3[i]:=h*rechterlid(x,y,i);
x:=x+H2;
for i:=1 to n do y[i]:=v[i]+k3[i]/2;
for i:=1 to n do k4[i]:=h*rechterlid(x,y,i);
for i:=1 to n do y[i]:=v[i]+(k1[i]+2*(k2[i]+k3[i])+k4[i])/6;
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x:=U+j*h;
end;

end;

C.4 HFLOW.PAS

Program HFLOW(Input,Output);
{$M 65520,0,655360}
{$N+,E-}

{******************************************************************}
{ Model van een expanderend, chemisch actief cascadeboogplasma }
{ bestaande uit puur waterstof. De vergelijkingen zijn eerste }
{ orde differentiaalvergelijkingen (totaal zeven). }
{ # dnHplus/dz }
{ # dnH/dz }
{ # dnH2/dz }
{ # dne/dz }
{ # du/dz }
{ # dTh/dz }
{ # dTe/dz }
{ De variabelen zijn: }
{ nHplus : de waterstof ion dichtheid }
{ nH : de atomaire waterstof dichtheid }
{ nH2 : de moleculaire waterstof dichtheid }
{ ne : de electronendichtheid }
{ u : de snelheid van het plasma }
{ Th : de zware deeltjes temperatuur in eV }
{ Te : de electronen temperatuur in eV }
{ De brontermen van de vergelijkingen zijn: }
{ SHplus de bronterm voor Hplus produktie-destruktie }
{ SH ,, ,, ,, H ,, ,, }
{ SH2 ,, ,, ,, H2 ,, ,, }
{ Se ,, ,, ,, e ,, ,, }
{ Qh ,, energie bronterm voor de zware deeltjes }
{ Qe ,, ,, ,, ,, ,, electronen }
{ }
{ vergelijkingen: - massabalans electronen }
{ - massbalansen H, Hplus, H2 }
{ - energiebalans electronen }
{ - energiebalans zware deeltjes }
{ - totale opgetelde impulsbalans }
{ de vgl worden numeriek opgelost (m.b.v. Runge Kutta) }
{ }
{ Opmerking: stroomgeneratie en warmtegeleiding worden }
{ verwaarloosd }
{******************************************************************}

Uses Crt, Matrix, Atom_def, Read_H, NewSolv;

Const
k_Boltz = 1.38066e-23; {Boltzmann’s constant}
me = 9.1095e-31; {Mass of an electron}
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mAr = 6.6817e-26; {Mass of an Argon atom}
mH = mAr/40; {Mass of a hydrogen atom}
q_el = 1.6021892e-19; {Elementary charge}
eps_dielec = 8.8542e-12; {Dielectrical constant}
el_factor = 1.44e-9; {e/(4\pi\epsilon_0)}
Sahaconst = 2.414721e+21; {Numerical constant in Saha relation}
gammaH = 5/3; {Cp/Cv atomic hydrogen}
gammaH2 = 7/5; {Cp/Cv molecular hydrogen}
a1 = 1/(gammaH-1);
a2 = 1/(gammaH2-1);
orde_RKn = 7; {Number of flow equations}
n_norm = 1e20; {Normalized density=1e20/m3}
{necessary in order to obtain stable LU decomposition}

Var
ax_pos, p, ne, nH, nHplus, nH2, u, Th, Te, Tvib, straal,
nHmin, nH2plus, nH3plus, nu : float;
pi,start_ne, start_nH, start_nHplus, start_nH2, start_p, start_Te,
start_Th, start_u, r_start, tan_alfa, p_back, flow, part_s,
D_ambip, x_eind : real;
k, l, m : integer;
y, v, s : TNvector;
A, B : TNmatrix;
error : byte;
x, d, h, dummy : float;
data_out, data_in, data_control : text;
H_dat : atomic_data;
SH,Se,SHplus,SH2,Qe,Qh : float;
pop : float_level_arr;
Aantal : array[1..2,1..11] of float;
Diff : array[1..11] of float;
Test_result: byte; { Used in Turbo Pascal 7.0 to detect }

{ a 386 or 486 and use 32 bits code. }

Function Coulomb_log(ne,Te: float): float; {ne in /mˆ3, Te in eV}
begin
Coulomb_log:=ln((12*pi*(eps_dielec*q_el*Te)*sqrt(eps_dielec*q_el*Te))/

(q_el*q_el*q_el*sqrt(ne)));
end;

Procedure CRmodel(Var pop: float_level_arr);
Var exponent,Tvib,alfa_CR,S_CR,nHmin,nH3plus,

gamma0,gamma1,gamma2,gamma3,deelv : float;
n_plus,n_1,n_H2,K_rate3 : float_level_arr;
Total_Matrix,A_mat,K_rate : float_level_arr_2dim;
K_mol,K_mol_rev : K_arr;

Procedure Calculation(Var pop: float_level_arr);
begin

Tvib:=0.3;
nHmin:=1e17;
nH3plus:=1e17;
exponent:=6;
with H_dat do
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begin
Calc_Matrix(H_dat,ne,nHplus,nH,nH2,Te,Th,Tvib,deelv,Total_Matrix,

K_rate,K_rate3,A_mat,K_mol,K_mol_rev,exponent,nHmin,
nH3plus,gamma1,gamma2,gamma3);

Calc_stat(n,m,plus,Total_Matrix,pop,n_plus,n_1,n_H2,alfa_CR,S_CR,
nH2,nH,nHplus,ne);

end;
end; {Calculation}

Procedure Iteration;
Var relax : float;

test : float;
dummyplus,dummyH,dummye: float;
nu_ei,nu_eH,nu_eH2 : float;
i,j : integer;

begin
with H_dat do
begin

relax:=1;
test:=relax*(ne+pop[plus+3]-pop[plus+1]-pop[plus+2])+(1-relax)*nHplus;
while test < 1e3 do
begin
test:=relax*(ne+pop[plus+3]-pop[plus+1]-pop[plus+2])+(1-relax)*nHplus;
relax:=relax/2;
gotoXY(50,12);
writeln(’Decreasing relaxation factor; relax = ’,relax);

end;
gotoXY(10,14);
write(’Relaxatiefactor = ’,relax:2:6,’ ’);
i:=0;
repeat
writeln;
i:=i+1;
gotoXY(10,12);
writeln(i,’th iteration step. ’);
nHmin:=pop[plus+3];
nH3plus:=pop[plus+2];
nHplus:=relax*(ne+pop[plus+3]-pop[plus+1]-pop[plus+2])

+(1-relax)*nHplus;
Calculation(ne,nHplus,nH,nH2,pop);

until (Abs(nHplus+pop[plus+1]+pop[plus+2]-ne-pop[plus+3])<1e5) and
(Abs(nHmin-pop[plus+3])<1e4) and (Abs(nH3plus-pop[plus+2])<1e4) or (i>10);

for j:=1 to (plus+3) do if pop[j]<0 then pop[j]:=0;

Aantal[1, 1] := deelv*pop[plus+m]*pop[plus]*K_mol[1];
Aantal[2, 1] := pop[plus+1]*nH*K_mol_rev[1];
Aantal[1, 2] := deelv*pop[plus+m]*ne*K_mol[2];
Aantal[2, 2] := pop[plus+3]*nH*K_mol_rev[2];
Aantal[1, 3] := pop[plus+1]*pop[plus+m]*K_mol[3];
Aantal[2, 3] := nH*pop[plus+2]*K_mol_rev[3];
Aantal[1, 4] := pop[plus+1]*ne*K_mol[4];
Aantal[2, 4] := pop[2]*nH*K_mol_rev[4];
Aantal[1, 5] := pop[plus+2]*ne*K_mol[5];
Aantal[2, 5] := deelv*pop[plus+m]*pop[2]*K_mol_rev[5];
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Aantal[1, 6] := pop[plus+2]*ne*K_mol[6];
Aantal[2, 6] := nH*nH*nH*K_mol_rev[6];
Aantal[1, 7] := pop[plus]*pop[plus+3]*K_mol[7];
Aantal[2, 7] := nH*pop[2]*K_mol_rev[7];
Aantal[1, 8] := pop[plus+3]*ne*K_mol[8];
Aantal[2, 8] := nH*ne*ne*K_mol_rev[8];
Aantal[1, 9] := pop[plus]*pop[plus+3]*K_mol[9];
Aantal[2, 9] := nH*pop[3]*K_mol_rev[9];
Aantal[1,10] := pop[plus+3]*nH*K_mol[10];
Aantal[2,10] := nH*nH*ne*K_mol_rev[10];
Aantal[1,11] := pop[plus+3]*pop[plus+2]*K_mol[11];
Aantal[2,11] := pop[plus+m]*pop[plus+m]*K_mol_rev[11];
for j:=1 to 11 do Diff[j]:=Aantal[1,j]-Aantal[2,j];

{SHplus}
dummyplus:=0; {Atomic mass terms for Hydrogen atoms}
for j:=1 to (plus-1) do dummyplus:=dummyplus+

ne*pop[j]*K_rate[j,plus]-ne*ne*nHplus*K_rate3[j]+
ne*nHplus*(K_rate[plus,j]-K_rate3[j]);

SHplus:=-Diff[7]-Diff[9]+dummyplus;

{SH}
dummyH:=-dummyplus; {Atomic mass terms for protons}
SH:=Diff[1]+Diff[2]+Diff[3]+Diff[4]+3*Diff[6]+Diff[7]+Diff[8]+Diff[9]+

2*Diff[10]+dummyH;

{SH2}
SH2:=2*Diff[11];

{Se}
dummye:=dummyplus; {Atomic mass terms for electrons}
Se:=-Diff[4]-Diff[5]-Diff[6]+Diff[8]+Diff[10]+dummye;

{Qh}
nu_ei:=(4/3)*sqrt(2*pi)*sqr(q_el*el_factor/me)*power(me/(q_el*Te),3/2)*

nHplus*Coulomb_log(ne,Te); {Proefschr. D.A. Benoy, p 85}
nu_eH:=1e-18*nH*power(3*q_el*Te/me,0.3); {Inleiding plasmafysica H.2}
nu_eH2:=1e-18*nH2*power(3*q_el*Te/me,0.3); {Inleiding plasmafysica H.2}
Qh:=1.5*ne*q_el*(Te-Th)*(2*me/mH)*(nu_ei+nu_eH+0.5*nu_eH2);

{Qe}
Qe:=-Qh;
end; {with H_dat do}
gotoXY(10,16);
writeln(i,’ iteration steps used.’);
end; {Iteration}

begin {CRmodel}
Qe:=0; QH:=0; SH:=0; SHplus:=0; SH2:=0; Se:=0;
ne:=n_norm*ne; nHplus:=n_norm*nHplus;
nH:=n_norm*nH; nH2:=n_norm*nH2;
Calculation(pop);
Iteration;
ne:=ne/n_norm; nHplus:=nHplus/n_norm;
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nH:=nH/n_norm; nH2:=nH2/n_norm;
end; {CRmodel}

Function Rechterlid(x: float; Var y: TNvector; i: integer):float;

{ rechterlid van het stelsel d.v.’s }
{ betekenis parameters: y[1]=nHplus }
{ y[2]=nH }
{ y[3]=nH2 }
{ y[4]=ne }
{ y[5]=u }
{ y[6]=Th }
{ y[7]=Te }

Var pp,nee,nHH,nHHplus,nHH2,uu,Thh,Tee,
MM_2,A_factor: float;
ii,jj,kk: integer;

begin
nHHplus:=y[1];
nHH:=y[2];
nHH2:=y[3];
nee:=y[4];
uu:=y[5];
Thh:=y[6];
Tee:=y[7];
A_factor:=2.0*tan_alfa/straal;
with H_dat do
begin

{Uitrekenen matrix A en bronvector S}
for ii:=1 to orde_RKn do
begin

s[ii]:=0;
v[ii]:=0;
for jj:=1 to orde_RKn do
begin
A[ii,jj]:=0;
B[ii,jj]:=0;

end;
end;

A[1,1]:=uu; A[1,5]:=nHHplus;
A[2,2]:=uu; A[2,5]:=nHH;
A[3,3]:=uu; A[3,5]:=nHH2;
A[4,4]:=uu; A[4,5]:=nee;
A[5,1]:=k_Boltz*Thh; A[5,2]:=k_Boltz*Thh; A[5,3]:=k_Boltz*Thh;
A[5,4]:=k_Boltz*Tee; A[5,5]:=mh*uu*(2*nHH2+nHH+nHHplus)*k_Boltz;
A[5,6]:=(nHH+nHH2+nHHplus)*k_Boltz; A[5,7]:=nee*k_Boltz;

A[6,1]:=k_Boltz*Thh*uu*a1; A[6,2]:=k_Boltz*Thh*uu*a1;
A[6,3]:=k_Boltz*Thh*uu*a2;
A[6,5]:=((1+a1)*(nHH+nHHplus)+(1+a2)*nHH2)*uu*k_Boltz;
A[6,6]:=(a1*(nHH+nHHplus)+a2*nHH2)*uu*k_Boltz;
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A[7,4]:=k_Boltz*Tee*uu*a1;
A[7,5]:=(1+a1)*nee*k_Boltz*Tee;
A[7,7]:=a1*nee*uu*k_Boltz;

S[1]:=SHplus-nHHplus*uu*A_factor;
S[2]:=SH-nHH*uu*A_factor;
S[3]:=SH2-nHH2*uu*A_factor;
S[4]:=Se-nee*uu*A_factor;
S[5]:=0;
S[6]:=Qh-((1+a1)*(nHH+nHHplus)+(1+a2)*nHH2)*k_Boltz*Thh*uu*A_factor;
S[7]:=Qe-(1+a1)*nee*k_Boltz*Tee*uu*A_factor;
{Matrix A en bronvector S zijn bekend, nu door invertering rechterlid}

Inverse(orde_Rkn,A,B,error); {berekening inverse A}
if error=2 then writeln(’Inverse matrix error.’)
else if error=1 then writeln(’Matrix dimension error.’);

for ii:=1 to orde_RKn do
begin

v[ii]:=0.0;
for jj:=1 to orde_RKn do
begin
v[ii]:=v[ii]+B[ii,jj]*S[jj];

end;
end;

{v =Mˆ(-1)*s te berekenen}
{inverse_A; v=inverse_A*s;}
case i of 1: rechterlid:=v[1];

2: rechterlid:=v[2];
3: rechterlid:=v[3];
4: rechterlid:=v[4];
5: rechterlid:=v[5];
6: rechterlid:=v[6];
7: rechterlid:=v[7];

end;
end; {H_dat}

end; {rechterlid}

{$I RK4_N.INC}

begin {Main program}
CheckSnow:=false;
TextColor(LightGreen);
TextBackGround(Black);
ClrScr;

Test_result:=Test8086;
case test_result of

0: writeln(’8086 processor detected.’);
1: writeln(’80286 processor detected.’);
2: writeln(’80386, 80486 or Pentium processor detected.’);

end;
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assign(data_out,’HFLOW.DAT’);
rewrite(data_out);
write(data_out,’#ax_pos nHplus nH nH2 ’);
write(data_out,’ ne flux u (m/s) ’);
writeln(data_out,’Th (eV) Te (eV) nH2+ nH3+ nH-’);

{ x_eind : eindpositie }
{ d : de stapgrootte }
{ p_back : achtergronddruk (Pa) }
{ flow : spreekt voor zich (l/min) }
{ r_start : de beginwaarde van de straal van het plasma }
{ tan_alfa: de tangens van de expansie hoek }
{ de rest : spreekt voor zich }

pi:=4*arctan(1);
x_eind:=0.005;
d:=5e-4; {External stepsize of Runge-Kutta}
h:=d/20; {Internal stepsize of Runge-Kutta}
p_back:=40;
flow:=3500;
r_start:=5e-2;

start_ne:=1e19/n_norm;
start_nHplus:=1e19/n_norm;
start_nH:=1e20/n_norm;
start_nH2:=7e20/n_norm;
start_u:=1000;
start_Te:=0.3; {eV}
start_Th:=0.3; {eV}

nHplus:=start_nHplus;
nH:=start_nH;
nH2:=start_nH2;
ne:=start_ne;
u:=start_u;
Th:=start_Th;
Te:=start_Te;

y[1]:=start_nHplus;
y[2]:=start_nH;
y[3]:=start_nH2;
y[4]:=start_ne;
y[5]:=start_u;
y[6]:=start_Th;
y[7]:=start_Te;

p:=k_Boltz*((start_nHplus+start_nh+start_nH2)*start_Th+start_ne*start_Te)
*N_Norm*k_Boltz/q_el;

x:=0.002;
ax_pos:=x;

straal:=r_start;
nu:=(4/3)*sqrt(2*pi)*sqr(q_el*el_factor)*power(me/(q_el*Te),3/2)*
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nHplus*Coulomb_log(ne,Te)/(me*mH);
D_ambip:=q_el*(Te+Th)/(mH*nu);
tan_alfa:=2*D_ambip/(u*straal);

Read_atomic_data(H_dat);
with H_dat do
begin

CRmodel(pop);
write(data_out,ax_pos:1:5,’ ’,nHplus:12,’ ’,nH:12,’ ’,nH2:12,’ ’);
write(data_out,ne:12,’ ’,u*pi*sqr(straal)*(nHplus+ne+2*nH2):12,’ ’);
write(data_out,u:12,’ ’,Th:0:3,’ ’,Te:0:3,’ ’);
writeln(data_out,pop[plus+1]:12,’ ’,pop[plus+2]:12,’ ’,pop[plus+3]:12);

while x < x_eind do
begin

gotoXY(15,10);
TextBackGround(LightGray);
TextColor(Red);
writeln(’ x = ’,x:1:5,’ ’);
TextBackGround(Black);
TextColor(LightGreen);
nu:=(4/3)*sqrt(2*pi)*sqr(q_el*el_factor)*power(me/(q_el*Te),3/2)*

nHplus*Coulomb_log(ne,Te)/(me*mH);
D_ambip:=q_el*(Te+Th)/(mH*nu);
tan_alfa:=2*D_ambip/(u*straal);
straal:=straal+d*tan_alfa;
gotoXY(1,18); ClrEol;
RK4_N(orde_RKn,x,y,d,h);
CRmodel(pop);
ax_pos:=x;
nHplus:=y[1];
nH:=y[2];
nH2:=y[3];
ne:=y[4];
u:=y[5];
Th:=y[6];
Te:=y[7];
p:=k_Boltz*((pop[plus+1]+pop[plus+2]+pop[plus+3]+nHplus+nH+nH2)

*Th+ne*Te)*N_Norm*k_Boltz/q_el;

write(data_out,ax_pos:1:5,’ ’,nHplus:12,’ ’,nH:12,’ ’,nH2:12,’ ’);
write(data_out,ne:12,’ ’,u*pi*sqr(straal)*(nHplus+ne+2*nH2):12,’ ’);
write(data_out,u:12,’ ’,Th:0:3,’ ’,Te:0:3,’ ’);
writeln(data_out,pop[plus+1]:12,’ ’,pop[plus+2]:12,’ ’,pop[plus+3]:12);

end;
end;
close(data_out);
close(data_control);
gotoXY(1,20);
end.
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The positioning system

D.1 Basic setup of the positioning system

The positioning of the optical system with respect to the window of the vacuum vessel is adjusted with
a platform which can move over 2 translation rails. The movement is achieved by pressured air. The
pressured air can escape via 6 switches, of which 2 are used for the horizontal movement, 2 for the vertical
movement and 2 brakes to maintain a position. When, for example, the left horizontal switch is open en
the right one is closed, the pressered air will push the platform from the right to the left. When the switches
are open they use an electrical current of 24 V and 0.3 A. This current is regulated with 6 solid state relais,
which on their turn are controlled by a computer generating TTL pulses. The numbering and meaning of
the switches is given in figure D.1.
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V
er

tic
al

ra
il

�

�� m

m

m

m m1 2

3 4

5

6

1 Vertical brake 4 Movement left
2 Horizontal brake 5 Movement up
3 Movement right 6 Movement down

Figure D.1: The placement and numbering of the switches on the positioning system.

D.2 Electrical diagram of the pressured air control

The positioningsystem is made up for by the electronic scheme which is given in figure D.2. The transistors
are needed to convert the TTL pulses generated by the computer into pulses which can be used by the
OPTO 22 solid state relais. If they were not used, the solid state relais would demand too much current
from the PC-lab card, which could get damaged.

76
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Figure D.2: The electrical control for the pressured-air switches.

There are 6 OPTO 22 switches used, so also 6 Dout lines from the PCL-718 card are needed. They are
connected on connector CN(3) (Digital out) on pin 0 to 5.

D.3 Electrical diagram of the position measurement

For the measurement of the position, the electronic setup given in figure D.3 was used. To simplify the
setup, one (double) cable is laid from the reference voltage supply to the positioning system, and one from
the reference voltage supply to the computer. To achieve this, the plugs are internally cross-linked:

Con 1 Con 2 Computer
1 + ref 1 nc
2 0 V $ 2 $ 0 V
3 nc 3 nc
4 S1 $ 4 $ S1
5 S2 $ 5 $ S2
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Figure D.3: The electrical setup for the position measurement.

D.4 Position install program

The positioning is regulated with a program from which the basic setup is given below. UnitMove contains
the procedures and functions to measure the position and to control the pressured air. The main program is
an example of how to use unit MOVE. The procedures in unit MOVE are integrated into a program that also
controls the step engine of the monochromator and the readout of the photomultiplier.

Unit Move

Unit Move;

Interface

Type coord_array = array[0..1] of real;
Var coordinate: coord_array;

Procedure Read_position(Var coordinate:coord_array);
Procedure Set_position(posX,posY:real);

Implementation

Uses Crt;



D.4 Position install program 79

Const
Base = $300; {Base adress of the PCL-718 card}
X_scale_factor = 0.02488; {Factors to convert the A/D readout to cm}
Y_scale_factor = 0.01246;
Y_brake_up = 0.43; {Factors to compensate for the brake time}
Y_brake_down = 0.25;
X_brake_right = 0.33;
X_brake_left = 0.20;
Error = 0.25; {Maximal allowed error in the position in cm}

Var
sw1,sw2,sw3,sw4,sw5,sw6: boolean;
posX,posY : integer;

Procedure Init_ADC;
var

test : byte;
msb, lsb : byte;
uitlezing: integer;

begin
port[base+9]:=$70;
test:=port[base+9];
if test <> $70
then
begin

writeln (’PCL-718 Hardware verification failed!’);
readln;
exit

end;
port[base+8]:=$1; { clear interrupt request }
port[base+2]:=$10; { set MUX-range: channel 0 to 1}
test:=port[base+2];
if test <> $10
then
begin

writeln(’Set scan channel failed!’);
readln;
exit

end
end; { end initialization }

Function ad_conversion: word;
Var msb, lsb: word;
begin

port[base]:=$0;
repeat until ((port[Base + 8] AND (1 SHL 7)) = $0);

{ A/D status register, end of conversion }
lsb:=port[base];
msb:=port[base+1];
ad_conversion:=msb*16+lsb div 16;

end;

Procedure read_position(Var coordinate:coord_array);
Const average = 25;
Var i : integer;
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dummy: longint;
begin

dummy:=0;
port[base+2]:=$55; { Select X-input channel: CN3-5 }
for i:=1 to average do dummy:=dummy+4095-ad_conversion;
coordinate[0]:=(dummy/average)*X_scale_factor;
dummy:=0;
port[base+2]:=$66; { Select Y-input channel: CN3-6 }
for i:=1 to average do dummy:=dummy+ad_conversion;
coordinate[1]:=(dummy/average)*Y_scale_factor;

end;

Procedure set_switches(sw1,sw2,sw3,sw4,sw5,sw6: boolean);
Var teller: byte;
begin
{ Switches 1 to 6 are connected with pin 0 to 6 from CN3 (D_out) }

teller:=0;
if sw1=true then teller:=teller+1;
if sw2=true then teller:=teller+2;
if sw3=true then teller:=teller+4;
if sw4=true then teller:=teller+8;
if sw5=true then teller:=teller+16;
if sw6=true then teller:=teller+32;
port[base+3]:=teller;

end;

Procedure Right;
begin

sw1:=true; sw2:=false; sw3:=false;
sw4:=true; sw5:=false; sw6:=false;
set_switches(sw1,sw2,sw3,sw4,sw5,sw6); {Brake X OFF, Y ON, move X}

end;

Procedure Left;
begin

sw1:=true; sw2:=false; sw3:=true;
sw4:=false; sw5:=false; sw6:=false;
set_switches(sw1,sw2,sw3,sw4,sw5,sw6); {Brake X OFF, Y ON, move X}

end;

Procedure Up;
begin

sw1:=false; sw2:=true; sw3:=false;
sw4:=false; sw5:=false; sw6:=true;
set_switches(sw1,sw2,sw3,sw4,sw5,sw6); {Brake Y OFF, X ON, move Y}

end;

Procedure Down;
begin

sw1:=false; sw2:=true; sw3:=false;
sw4:=false; sw5:=true; sw6:=false;
set_switches(sw1,sw2,sw3,sw4,sw5,sw6); {Brake Y OFF, X ON, move Y}

end;
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Procedure Brake;
begin

sw1:=true; sw2:=true; sw3:=false;
sw4:=false; sw5:=false; sw6:=false;
set_switches(sw1,sw2,sw3,sw4,sw5,sw6); { All brakes on }

end;

Procedure Set_hor_position(posX:real);
Begin

Init_ADC;
Read_position(coordinate);

if (posX - coordinate[0] > 0) then
begin

Right;
repeat
Read_position(coordinate);

until ((posX-coordinate[0]) <= X_brake_right);
Brake;

end
else if (posX - coordinate[0] < 0) then
begin

Left;
repeat
Read_position(coordinate);

until ((posX-coordinate[0]) >= -X_brake_left);
Brake;

end;
end;

Procedure Set_ver_position(posY:real);
Begin

if (posY - coordinate[1] < 0) then
begin

Down;
repeat
Read_position(coordinate);

until ((posY-coordinate[1]) >= Y_brake_down);
Brake;

end
else if (posY - coordinate[1] > 0) then
begin

Up;
repeat
Read_position(coordinate);

until ((posY-coordinate[1]) <= Y_brake_up);
Brake;

end;
delay(200);

end;

Procedure Set_position(posX,posY:real);
begin

Read_position(coordinate);
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{ Achieve a defined distance of the wanted }
{ distance to receive a constant brake length }

if (Abs(posX - coordinate[0]) > Error) then
begin

Set_hor_position(posX-1);
Set_hor_position(posX);

end;
if (Abs(posY - coordinate[1]) > Error) then
begin

Set_ver_position(posY-1);
Set_ver_position(posY);

end;
end;

end.

Program SetPos

Program Setpos(input,output);
Uses Crt, Move;
Label 10, 20;

Var i : integer;
posX,posY : real;
coordinate: coord_array;
key : char;

begin
10:
begin

Clrscr;
Read_Position(coordinate);
writeln(’Current position:’);
writeln(’X =’,coordinate[0]:4:2,’ cm, Y =’,coordinate[1]:4:2,’ cm’);
write(’Which position do you want? X-coordinate: ’);
readln(posX);
write(’ Y-coordinate: ’);
readln(posY);
Set_Position(posX,posY);
Read_position(coordinate);
writeln(’The current position is:’);
writeln(’X =’,coordinate[0]:4:2,’ cm, Y =’,coordinate[1]:4:2,’ cm’);

end;

20:
begin

writeln(’Do you want another position? (y/n)’);
key:=upcase(readkey);
if key = ’Y’ then goto 10 else
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begin
if key <> ’N’ then writeln(’Incorrect choise !’) else exit;
goto 20;

end;
end;

end.
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Edgar, René, Roger, Jeroen, Judith and Katrijn. Especially Judith had a very positive influence on the
climate.

I also need to recommend Eberhart Mattes. Without his emx packet, TEX386 would not have been
possible and neither this report in this shape.

Finally, I need to thank Mirjam and my mother. Without their moral support, finishing this work would
have been much less easy.

85


